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Abstract

Digital Text forensics (DTF) is a novel term coined to deal with investigating truth-

fulness in digital data banks. It mostly handles authorship analysis such as plagiarism

detection, author identification, author obfuscation and author profiling. Specifically,

Author Profiling (AP) deals with the problem of identifying personal traits of au-

thors within their texts. In order to make a computer understand terms and perform

this chore, words must be represented as numerical entities, such as vectors in a n-

dimensional space. A way to do this is through Word Embeddings (WE), these can

be viewed as high density vectors that code the meaning of words, in such a way that

similar concepts tend to cluster. The use of WEs deliver State of the Art (SoA) re-

sults in various Natural Language Processing (NLP) tasks such as text classification.

Nonetheless, for problems like AP or Sentiment Analysis (SA), word vectors might

not be su�cient to attain good results. The reason behind this lacking in better

results can be attributed partially to WEs being non-contextual. To tackle the latter

problems enhanced embeddings must be produced, to improve the context prowess

of WEs or even to represent whole documents instead of single words. Theoretically,

these vectors might have an even higher density and are known as Document Embed-

dings (DE). Such representations attempt to capture “intention” within documents,

so they might be useful in the aforementioned AP and SA tasks. The idea behind

DEs is that a document may be viewed as the aggregation of its words, this means

that a new vector can be composed for example by averaging the WEs of its terms,

to produce a single vector that describes the whole document. The problem with a

simple averaging of terms relies within the importance of words. To compose a DE

not all terms must be aggregated with the same weight. Di↵erent strategies can be

useful to make more emphasis on some words; take for instance the term frequency-

inverse document frequency (tf-idf), which assigns values to words depending on the
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frequency that they appear on texts, o↵set by the rarity of the documents they ap-

pear on. Moreover, custom weighting metrics can be devised depending on the task.

In the first part of the present thesis a new statistic is introduced to establish im-

portance of words: the relevance topic value (rtv). Likewise, Genetic Programming

(GP) is used as an evolutionary strategy along with these statistic metrics to produce

term weighting schemes. The aforementioned strategy has been successfully tested

in 17 AP tasks over nine datasets, attaining top-quartile results compared to o�cial

results of six shared tasks held at the scientific event called Uncovering Plagiarism,

Authorship and Social Software Misuse (PAN) over the years 2013-2018. In the sec-

ond part of this dissertation, a novel and specialized Deep Neural Network (DNN)

architecture is proposed to tackle the AP problem. This new DL method merges

concepts of Wide & Deep (WD) networks, self-attention and the Transformer archi-

tecture, which is called The Profiler aka the Wide & Deep Transformer (WD-T).

This approach addresses AP tasks by noticing personal and stylistic latent informa-

tion useful to discern characteristics of authors in social media posts. Then, encodes

this information as wide features, which are inputted along with deep contextualized

WEs into the WD-T. Although this method was expressly tested in AP tasks, by the

achieved results, it can be inferred that di↵erent NLP problems might be successfully

addressed using this architecture with di↵erent wide features. The Profiler (WD-T)

was tested in five AP tasks of the 2017, 2018 and 2019 PAN datasets. Historically

the best performers at such shared tasks implement traditional Machine Learning

(ML) approaches. Even so, the WD-T was able to achieve results in the top-quartile

positions overall, while outperforming all DL participants in those competitions. In

short, this thesis addresses the AP problem using novel methods, based on traditional

and deep ML approaches. In both cases, the proposed methodologies attained com-

petitive results and demonstrates the rationale behind the idea, thus contributing to

the SoA in the AP/NLP field.
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For Olanda, Natalia & Ana Lucia

“You want to know how I did it? This is how I did it, Anton:

I never saved anything for the swim back.”

Vincent.

Gattaca (1997)
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Chapter 1

Introduction

1.1 Author Profiling in the context of Digital Text

Forensics

Digital Text Forensics (DTF) is a novel term coined to deal with investigating truth-

fulness in digital data banks. It mostly handles authorship analysis such as plagiarism

detection, author identification, author obfuscation and author profiling [1]. Specifi-

cally, Author Profiling (AP) is a computational task which aims to predict personal

characteristics of authors (e.g., gender, age or even personality traits) based on texts

that authors themselves have produced. The variety of these texts could span exam-

ples of formal writing, such as essays or articles, to informal interchange like comments

in social media or even product opinions in reviews [2]. AP has become popular as

a Natural Language Processing (NLP) task, given that it has proved its value in

sensitive applications like digital security, spotting Internet predatory activities or

detecting fraud and cyber-terrorism [3, 4]; but also it has been applied to improve

customer service, diagnosis of neurological disorders (e.g., autism, depression) or de-

tection of plagiarism [5, 4, 6, 7].

1.2 Representation of texts for author profiling

To identify personal features of authors it must be examined how they use words. A

way to computationally manipulate these words is by representing them as numeric

1
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vectors. In this sense, Word Embeddings (WEs) can be viewed as high density vec-

tors that encode the meaning of words, in such a way that similar concepts tend to

cluster within a n-dimensional space, hence the distance between WEs is a measure

of similarity [8, 9]. Consider that WEs have delivered State of the Art (SoA) results

in tasks such as text classification, language translation or speech recognition [8]. This

idea could be extrapolated to represent bigger chunks of text (commonly known as

Document Embeddings (DE)), and can be used to extract useful information, such

as “intention” from a whole document, an approach that has been exploited for AP

and Sentiment Analysis (SA) tasks [10]. DEs can be produced by several techniques,

being the centroids method one of the most popular and successful [11]. The idea

behind the centroids method is that a sentence, paragraph or even a whole document

can be viewed as the aggregation of its words, therefore a DE could be generated by

averaging the WEs of terms contained in the document.

1.3 The shortcomings of current text representa-

tion techniques

Since it is based on the average concept, the Centroid method could present some

shortcomings to capture subtle di↵erences in authors writing styles, thus making it

not entirely appropriate as it is for AP endeavors. To overcome this issue, in the first

part of this thesis a novel strategy is presented to generate DEs. This proposal relies

on the hypothesis that it is possible to find novel and optimized weights for each

word within a document, thus producing an improved aggregate strategy instead

of just averaging terms. To test this hypothesis Genetic Programming (GP) was

employed, which is a very sound approach to learn intrinsic structure within data via

mathematical equations [12]. According to the most recent literature review, GP has

not been employed for the purpose of evolving weighting schemes to aggregate WEs

into DEs in the context of AP, so a new application of GP is envisioned. The first

proposed pipeline is as follows: GP employs statistical features for each word within

a document (e.g., term frequency (tf), term frequency-inverse document frequency

(tf-idf)) to evolve equations to calculate the weights (importance) of terms. Then,

using word vector algorithms (e.g., word2vec, fastText, BERT), WEs are produced for

terms in the datasets. Next, WEs from users posts are aggregated into DEs using a
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weighted average (importance established by GP). Finally, using a Machine Learning

(ML) approach the DEs are used as features to predict the gender, age, language

variety and personality of authors. In addition, a novel numeric statistic feature

(rtv) is introduced, which is based on a frequency analysis over the use of words and

themes by persons. Moreover, rtv turned out to be the most likely feature to appear

alone in a single equation, then suggesting its usefulness as a WE weighting-scheme

factor.

1.4 The role of task-specific feature engineering

For the second part of this dissertation another approach is introduced, based on

a Deep Learning (DL) architecture known as the Transformer, which simplifies the

structure of Recurrent Neural Networks (RNN) and Convolutional Neural Networks

(CNN) to introduce an only-attention mechanism. In addition, inspired by the ideas

of Cheng et al. in [13], a joint e↵ort of wide and deep learning was explored. The

rationale behind the idea is that combining the generalization prowess of deep net-

works with the task-specific feature engineering (wide features), into a wide & deep

architecture, could render a better model that produces more accurate predictions.

That is the case of tasks such a AP. Hence, a novel DL architecture is proposed

specifically for the AP problem, called The Profiler aka the Wide & Deep Trans-

former (WD-T). This architecture, makes use of a structure similar to the encoder

section of a transformer, but dispenses of the multi-head attention structure in favor

of a single self-attention block, for contextualizing WEs produced by the skipgram

method (word2vec) [8], from datasets expressly designed for AP endeavours. In addi-

tion, a novel feature engineering methodology was devised for capturing fine grained

characteristics in texts, closely related to the profile of an author, thus enhancing the

predictive dexterity of the WD-T for AP tasks, by encoding these features in a wide

block that jointly with the deep encoder attains very competitive results.

1.5 Di↵erent approaches to the same task

The first proposal was exhaustively evaluated over a total of nine datasets (in 17 tasks)

that were originally devised for the scientific event called Uncovering Plagiarism,
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Authorship and Social Software Misuse (PAN1) [15], within the period 2013-2018.

Each year, the Conference and Labs of the Evaluation Forum (CLEF) organizes the

PAN conference including a shared task in AP, where several teams compete to predict

author’s features such as gender, age or personality traits (e.g., openness, extroversion,

etc.) originated in a variety of multilingual social media sources. Within this context,

the first approach could be contrasted against all the teams that submitted an entry

for each year’s contest. For completeness, two averaging baselines: a) a weighted

average using only tf-idf values, and b) using a simple mean of the WEs (centroids)

were also included. The results of each comparison show that the proposed approach

o↵ers very competitive performance to solve AP related tasks, ranking in the top-

quartile in every year’s competition. These results also suggest the flexibility and

robustness of this methodology, since through all the yearly competitions di↵erent

AP tasks and datasets have been used.

The second strategy was also tested using the same datasets, but this time just a

subset of those were employed, focusing only in English and Spanish datasets of the

2017-2019 shared tasks. The reason for selecting only these datasets was a greater

participation of DL strategies than in previous events, so a more consistent comparison

could be made. The AP tasks consisted in forecasting gender, language variety (e.g.,

British English, Mexican Spanish), and identification of bots from humans for the

2019 competition. Historically, in these shared tasks the top-quartile achievers tend

to employ more “traditional” approaches of ML, whilst the DL methods lean to the

lack luster side. In this context, it is worthy of mention that the results achieved by

the WD-T scored in the top-quartile positions overall and outperformed all previously

used DL based techniques.

1.6 Problem statement

In this day and age of mostly real life online interactions, DTF are fundamental for

a satisfactory operational environment. Within the DTF, the AP problem is of great

interest from the security and marketing point of view [1]. A fair amount of works

have attempted to solve the AP problem, for example several share tasks events are

1This acronym comes from the title of the first workshop held at SIGIR-2007: Plagiarism analysis,
Authorship identificatioa quen, and Near-duplicate detection [14]
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held each year to test accuracy of new algorithms [15]; these works report competi-

tive results predicting the gender of individuals, but they struggle in the forecasting

of personality traits like Openness (to experience), Conscientiousness, Extraversion,

Agreeableness and Neuroticism as stated by the Five Factor Model (FFM) of per-

sonality [16]. ML is a computer science field that has re-gained strength in the last

years with the advent of DL, a subfield of ML that has obtained strong achievements

in image & speech recognition, computer vision and as of lately Natural Language

Processing (NLP). NLP deals with the problem of how computers can understand

Human natural language [17]. AP may be viewed as a sub-task of NLP, and it should

be approached as such. The AP task is a di�cult one, mainly because involves sev-

eral disciplines (e.g., computer science, linguistics, psychology). Nonetheless, with

ML tools available nowadays, it is a problem that can be addressed with high hopes

of finding a sound solution, from the application point of view.

1.6.1 Variable nature of author profiling tasks

As already mentioned, the PAN scientific event held each year organizes several NLP

tasks, being AP one of the main attractions [18]. In this regard, several obstacles

need to be addressed. For example, the profiling of features like gender, age and

personality traits must be approached di↵erently, meaning that gender classification

might be easier than predicting the “openess” trait. The success of an AP task could

be measured in terms of how thorough an specimen can be profiled [16, 19].

1.6.2 The frailty of deep learning in author profiling

Another hurdle to overcome in AP is related with the ”underperforming” of novel DL

methodologies, which might be attributed in part to the size of available datasets.

Mostly “traditional” approaches have attained the top-quartile results since the 2013

PAN competition. Nonetheless, in recent years DL approaches have been gaining

terrain in the field of NLP. Take for instance that a RNN can be used to generate

text in the style of Shakespeare2 with incredible results. The documented e↵ectiveness

of RNNs on NLP tasks motivate a wider exploration of their reaches on problems like

2http://karpathy.github.io/2015/05/21/rnn-e↵ectiveness/
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AP. Literature states that RNNs, CNNs and as of lately Transformers are the most

employed DL architectures for NLP tasks [20].

1.6.3 Limitations of word vectors

Although WEs deliver SoA results in NLP tasks such as text classification, more

di�cult assignments like SA (which tries to identify positive from negative opinions)

or AP, are not benefited in the same way. WEs capture the “meaning” of a term,

nonetheless they still are non-contextual [21]. This means for instance that a unique

vector for the word “bank” is produced, whether the intended meaning is either a

financial institution or a river bank. Hence, the averaging of WEs to produce DEs

(centroids method) for identifying the gender, the age or even personality traits of

persons behind digital manuscripts is limited.

1.6.4 Novel e↵ective proposals

In the present work, departing from traditional NLP strategies, di↵erent techniques

were attempted to solve the AP problem. Two approaches are proposed, which

make use of the basic concepts of WEs, GP, DL, attention mechanisms and wide

& deep networks; for contributing to the SoA in feature engineering and learning

methods in the context of AP and NLP. These methodologies were able to capture

stylistic features (SF) of authors from natural language datasets, in order to accurately

predict some of their characteristics (e.g., gender, age). The main premise of the

current thesis relies on the theory that the written style of authors play a decisive

role in their profiling. SFs are determined by a number of techniques for arranging

words in a document, so that the intended message from the author can be properly

delivered. The style of an author is often determined by the use of such techniques

[22]. The reader might wonder the reason to approach the same problem from two

di↵erent perspectives. The argument could be constructed from the point of view of

application and resources. “Ttraditional” ML does not need a huge amount of data

to perform reasonably well. At the same time, it can o↵er a sound solution when

computational resources are scarce. On the other hand, DL struggles when there is

a shortage of information, whilst needing a considerable amount of computational

resources to perform adequately. Furthermore, many times the type of problem at
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hand is the only criterion for selecting one strategy or the other. Hence, in this

work two di↵erent but reliable and proven methodologies are presented. The first

one represents a technique that could be considered “traditional” ML, whereas the

second belongs to the family of DL architectures.

1.7 Research questions

In order to guide the present work, research questions are stated as follows:

• Could learned weighting-schemes of terms be applied to build DEs from WEs,

and achieve competitive results in a variety of datasets for AP tasks?

• Is there a way to combine the attention mechanism of a Deep Learning ar-

chitecture, and the fine grained perception of a wide network, over textual

datasets and their latent information (e.g., statistic and/or stylographic fea-

tures of texts), so it can perform competitively in AP tasks?

In the interest of fulfilling the research questions, the objectives of this thesis are:

1.8 General Objectives

• To devise a novel approach to produce DEs in order to predict more accurately

characteristics of authors such as gender, age and personality traits. By building

task-specific weighting-schemes that are learned from each particular dataset.

• To conceive a novel Deep Learning architecture that makes use of attention

mechanisms and wide & deep configurations, for DTF applications (specifically

tested in AP tasks).

1.8.1 Specific objectives

• To implement an evolutionary approach (GP) to evolve mathematical equations,

that could act as practical task-specific weighting-schemes of terms, to produce

DEs for the AP problem.
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• To design a new term-importance statistical value for the AP task, that could

be used along with well known NLP statistics (e.g., tf-idf ), to serve as a termi-

nal variable in GP for evolving formulas (weighting-schemes), with the aim to

capture how persons employ words and themes.

• To devise a novel Deep Learning architecture expressly for AP tasks, based on

attention mechanisms and wide & deep models, that could properly achieve the

profiling of authors in social media posts.

1.9 Significance and contribution

The contributions of the present thesis are:

• A set of novel approaches to compete in DTF tasks, specifically in AP.

• A novel statistic measure to ponder the importance of terms within a document

known as relevance topic value (rtv)

• A custom evolutionary approach based on Genetic Programming to produce a

weighting scheme of terms in a document.

• A novel DL architecture based on attention mechanisms, the transformer ar-

chitecture (encoder) and wide & deep networks, that could be used in DTF

applications, expressly in AP tasks.

1.10 Outline of the dissertation

In Chapter 2, several related research works are described, which have addressed

similar problems to those posed in the current thesis. Next, inChapter 3 various the-

ories behind the several techniques used to implement the proposed methodologies are

detailed. Then, in Chapter 4, the heuristic approach employed to comprehensively

address the AP problem through out 2013-2018 datasets is deconstructed. Moreover,

in Chapter 5 the novel DL technique known as the Profiler (WD-T) based on at-

tention mechanisms, the transformer architecture and wide & deep networks, will

be explained in detail. Finally in Chapter 6, several general conclusions about the
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reach of this dissertation are elaborated, as well as the future work envisioned.



Chapter 2

Literature Review

Through this chapter the lector will learn about the SoA in some NLP sub fields

closely related with the AP problem. Many NLP tasks are similarly approached,

thus it becomes relevant knowing how researchers have applied their methodologies

to address these problems. In doing so, it will become clear that both methodologies

proposed in this work are novel, e↵ective and pertinent.

2.1 Social Media or Thought Contagion?

The way to approach society’s needs has evolved through out the social media phe-

nomenon, now they must be treated as a product of collective thinking. This means

that it might be di�cult to discern between individual belief and massive opinions. In

this regard, social media analytics has become fundamental for modern-life activities

such as product placement, massive SA, political marketing, stock market prediction

and even real-time information retrieval [23, 24]. In order to make educated de-

cisions, trendings must be evaluated and assessments be carried out. At the same

time, several challenges need to be addressed such as the wide spread of fake news,

propaganda, disinformation and information pollution in general [25, 26].

Various recent works have attempted to deal with this current set of problems.

Take as an example the research of Chunlin et al., where the authors proposed in

[27] an algorithm that helps community detection within social networks. Moreover,

Automatic Language Identification (ALI) is the cornerstone of successful social media

mining. In this matter, Sarma et al. devised a method to perform e↵ective ALI from

10
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social media outlets [28]. Furthermore, establishing user profiles from social networks

is useful in recommender systems. In this sense, Sanchez et al. introduced in [29] a

method that delivers competitive results against cutting edge recommendation tech-

niques. In addition, nowadays social networks such as Twitter act as live breaking

news channels. In this subject, Khatuaa et al proposed in [30] a method for train-

ing Word Embeddings (WE) over domain-specific datasets, for predicting potential

outbreaks of contagious diseases like Ebola or Zika. Although these methods were

only tested with traditional ML algorithms, the attained results suggests that if more

multilingual medical data is available for training, the potential applications could be

of high social impact.

These are only a few examples that show the impact of social media and collective

thinking in modern real life interactions. However they make it clear that a proper

solution in the field of AP would greatly aid in said interplays.

2.2 Citizen Erased: The Importance of Author

Profiling

Among all NLP related tasks, AP has been profoundly studied in the last decade due

to its growing importance. Security and marketing over the Internet are crucial areas,

which can be enforced by means of an AP strategy [31]. From the standpoint of safety

and protection, predicting the age and gender of authors of social media posts, could

help prevention of sexual predatory threats, inhibit potential terrorist attacks, avert

financial fraud, among others [4]. In addition, the forecasting of combined character-

istics such as age, gender and personality traits, may aid early detection of serious

ailments the likes of depression and anxiety. Furthermore, economic activities can

be enhanced by using AP techniques, to properly acknowledge and opportunely ad-

dress customer demands, by anticipating the gender and age of persons behind social

media accounts. In this day and age of massive online interaction, the mechanisms

to establish one’s identity have become fundamental. From online banking proper

identification, to online shopping and government procedures, it is crucial to have

adequate means to establish correct digital personal profiles. As of today the AP

problem has been tackled with promising results, nonetheless, there is still room for

improvement [32, 33].
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2.3 Author Profiling and the Map of the Prob-

lematique

Authorship Attribution (AA) is a task addressed since the Renaissance [34]. Au-

tomatic Authorship Identification (AAI) is not a new field either, since it has been

studied for more than a hundred years [35]. AAI has been tackled using di↵erent

techniques like stylometry (i.e., the study of linguistic patterns of authors). The

writing style of people may be viewed as a personal signature, which is di�cult to

forge. This premise allows to predict the profile or even the author itself of written

works. Several identification problems have been solved by the use of stylometry. For

instance, the Federalist papers is a collection of articles devised in the late 1700’s

to promote the Constitution of the United States of America [36]. The authors of

such texts wished to remain anonymous, but in 1944 Douglas Adair attributed the

authorship of this articles to Alexander Hamilton, James Madison and John Jay us-

ing stylometric techniques. This was confirmed later by a computer analysis in 1964

[37]. In this regard, AAI might be viewed as an immediate antecedent of AP, which

ultimately is considered a sub problem. As can be seen, the need for appropriate

ways to profile individuals comes from long ago. However, at present its importance

has gained more relevance.

2.4 A Globalist Approach to Author Profiling

The identification and profiling of contemporary authors is not only limited to phys-

ically published works such as books. Currently, the majority of texts are found

online, and profiling and recognition of authors have di↵erent applications. For ex-

ample multilingual social media now represents a huge part of digital entries that

might need to be profiled [3]. The current forensic analysis techniques for identifying

potential threats, deal with extensive amounts of data, but only in short bursts from

each author (e.g., social media posts, blog entries). The size of the texts available on

a single author for training is known to a↵ect the outcome of automated classifiers

(ML). Even though larger texts are preferred, short samples like the ones found in

social media platforms such as Twitter, can be useful in the AP task. Then, several

studies show that the accuracy to predict gender and age in short texts declined little



CHAPTER 2. LITERATURE REVIEW 13

when compared to larger samples available, as long as the amount of such specimens

is plentiful [16]. Take for instance the work of De Boom et. al in [38], in their study

they approached this problem devising a vectorial representation based on WEs which

outperformed SoA baselines in semantic similarity tasks. Their method serves well

as an out-of-the-box strategy for other tasks, nonetheless it remains unknown if this

approach could attain the same results in multilingual of variable length datasets, as

the authors only tested their technique on English fixed length data. Moreover, social

media can provide additional information, that might help the profiling or identifica-

tion of authors over the Internet. For instance, Rangel et al. demonstrated in [5] that

modeling detected emotions through graphs in posts from social media data banks,

helps the prediction of age and gender more accurately. In this study the authors

showed evidence that their method could capture more complex language structures.

However, their approach did not perform well on short texts. Even though it was

tested only in Spanish datasets, it could be inferred a similar performance in other

languages too.

Moreover, SA tasks pose a similar di�culty as AP problems, in both cases the

representation of the author’s “intention” is fundamental, to predict the opinions and

characteristics of authors respectively. For example, the works of Saif et al. and

Fersini et al., aimed to boost the representation of words through polarity [39, 40].

Although Saif et al. outperformed existing lexicon labeling methods, their approach

was not contrasted against more novel ML algorithms, mainly due to the lack of

datasets for evaluating entity level sentiments. On the other hand, Fersini et al.

proved that their method performs well in cross-domain environments, yet it is lan-

guage dependant and, as with many ML techniques, does not perform well with a

small number of training instances. In AP, increasing the discerning capabilities of

features, might be accomplished by accentuating the personal data in posts. For ex-

ample, the study of Ortega-Mendoza et al. demonstrated an increased performance

of up to 7% in AP tasks, by emphasizing the personal information of authors [41].

Their method demonstrated robustness when used with di↵erent ML classifiers. Al-

though their proposed technique only explores personal information as enhancer, it

pose the question of whether another type of latent data, could also improve features

for AP related tasks. In this regard, both of the methodologies introduced in this

thesis, o↵er a solution to some of the shortcomings of the techniques just described in
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the past lines. By presenting e↵ective multi-lingual solutions, that also incorporate

several types of latent information that increase their overall performance.

2.5 Aiming for Supremacy: Author Profiling as

Shared Tasks

Shared tasks are a great way to encourage researches to test their current works. In

addition, they promote a continuing improving community that can share knowledge

and enrich the area in question. For the AP problem, the PAN scientific event coor-

dinates an annually competition since 2013. Every year new datasets and challenges

are introduced, so that in order to solve the tasks, the eventual winner teams need to

try di↵erent novel approaches. Take for instance the participation of López-Monroy

et al. in 2013, they crafted their features on second order representations [42]. In 2014

again López-Monroy et al., now used as features Second Order Attributes (SOA) (a

dense and low dimensional representation of documents) [43]. For the 2015 edition,

Álvarez-Carmona et al. made a combined use of SOA and Latent Semantic Analysis

(LSA) techniques [44]. Furthermore, in 2016 Busger et al. also employed SOA to

represent features [45]. Likewise, Basile et al. in 2017 used tf-idf weighted charac-

ter and word n-grams as features [46]. In 2018 Daneshvar et al. performed feature

construction (character and word n-grams) and dimensionality reduction using LSA

[47]. Finally, in 2019, the task consisted in indentifying bots from humans and also

the gender. The winner in this year’s shared task employed a character and word

n-grams approach for feature engineering, and the Support Vector Machine (SVM)

algorithm as a classifier [48]. As can be seen, and also concluded by the organiz-

ers in [49], the traditional ML approaches generally attained the top-quartile results.

Nonetheless, in recent years (mostly since 2017), DL techniques have been tried out

also, but with less than ideal results. Take for instance the 2017 competition, the

work of Miura et al. in [50] addressed AP by using a sophisticated DL architecture

containing WEs, Recurrent Neural Network (RNN) and Convolutional Neural Net-

work (CNN) layers with attention mechanisms. In 2018 even more DL strategies

competed. For example, Hosseinia et al. in [51] approached the AP task by using two

parallel Long Short-Term Memory (LSTM) RNNs, also with attention mechanisms.

Finally, in 2019 more deep networks took part in the shared task. That is the case
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of Polignano et al. in [52], where they used a CNN. There are many more instances

of DL approaches in the most recent competitions, all of which will be examined in

Chapter 5. Several hypothesis may be established regarding the reason for the un-

derperforming of DL strategies, being the size of the datasets one of various causes,

since DL models are known to be successful mainly when huge amounts of training

data are available. Furthermore, the variety of approaches (either “traditional” or

“deep”) shows that there is no gold standard to address AP tasks, so there is plenty

of room for improvement. By the end of this thesis, the reader will have learned how

the proposed methodologies compare with the competitors just explained, and also

will find interesting the high performance achieved by them; attaining in many cases

SoA results.

2.6 New Born Trends in Text Representations

One of the main goals of NLP is to construct an e↵ective computational representation

of text [53]. Since WEs broke out circa 2013, a huge leap forward was made to depict

words in computational terms. Even though WEs have helped the improvement of

some NLP tasks, other ones such as AP or SA have yet to benefit in the same manner,

thus it is of great importance the continuing search for better text representations

techniques. Several works have focused on devising an e↵ective method to represent

sentences, starting o↵ from WEs. Take for instance the work of Rossiello et al. in

[54]. In their study, the authors aimed to perform text summarization, by building

sentence embeddings that represent the abstract of the original text using a centroid-

based approach, so the closest sentences to the centroid are used to construct the

text summarization. Although simple this technique proved to be competitive, yet it

shows that centroid-based methodologies in deed capture latent information.

Whilst the aggregation of WEs is the preferred method to construct document

Embeddings (DE) for NLP problems, the nature of the task determine the assembly

technique to apply. For example Arora et al. used a composition procedure by cal-

culating a weighted-average of WEs, using as weight values a measurement similar

to tf-idf [55]. Granted their technique attains competitive results in textual similar-

ity and SA tasks, it is limited when detecting sentiments, mainly due to its generic

weighting scheme. In addition, the “geometry” of the DEs has also been studied. For
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example Michel et al. proposed in their work a topological representation of docu-

ments, by “drawing” their “shape” using the euclidean distance between WEs in their

n-dimensional space [56]. Although they aimed to boost the performance of DEs in

more complex NLP tasks such as SA, the results attained by their study were not

entirely satisfactory. Nonetheless, the sophisticated mathematical technique for es-

tablishing a geometric shape of DEs, begets further research. Furthermore, the work

of Chen in [57] addressed SA and document classification problems also through com-

posing DEs by aggregating WEs. Their proposed approach randomly deleted portions

of text for computational tractability, whilst simultaneously enhanced the discerning

prowess of terms using context, although it is yet to be tested on multilingual data.

Moreover, Wu et al. proposed a new type of sentence embeddings departing from

pre-trained WEs. They employed a distance metric known as the word mover’s dis-

tance, to provide their embeddings with contextual vectorial meaning. They attained

competitive results in several classification and similarity tasks [58]. These studies

demonstrate that task-specific policies for constructing DEs are very useful.

Producing a weighting-scheme for terms via an evolutionary method has been

proved to be e↵ective. For instance, Escalante et al. proposed in their work a Ge-

netic Programming (GP) approach to produce useful weighting schemes of words, to

represent documents in a vector space [59]. Even though the authors did not employ

WEs as features, their research attained competitive results against SoA results in

text classification tasks, and generalizes well in other NLP problems.

It will be clear in the next chapters how the first proposed methodology of this

thesis performed very well against SoA results. By evolving weighting schemes for

WEs, that pick up latent information valuable for the profiling of authors.

Moreover, DL and WEs have become a very successful jointly e↵ort in the NLP

field [4, 60]. For instance, when aggregating WEs into DEs one major goal is to

pay attention to the context of words, to determine their weights. McCann et al.

implemented in [61] an attention sequence-to-sequence model to contextualize WEs.

Their approach outperformed pre-trained word embeddings (GloVe), as layer starters

of deep neural models in several NLP tasks. This study shows promising results as an

enhancer of pre-trained or custom WEs, even if they are used as a feature extraction

technique, yet it remains to be tested on multilingual datasets, though performance

is expected to be in the same level. In addition, the work of Mahdi et. al in [2]
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demonstrated how to improve pre-trained WEs such as Word2Vec and GloVe in SA

tasks. Nonetheless it is not clear if customized WEs will also benefit in the same

way. Recurrent Neural Networks (RNN) are the top DL choice for NLP tasks. RNNs

are known for their e�cacy in time-series type of problems [4]. NLP is often seen

as a term sequence problem. In this regard, Palangi et al. used a LSTM network

to produce semantic embeddings for information retrieval purposes [62]. Although

this approach outperformed the paragraph vector algorithm (doc2vec), this study

could benefit from a more comprehensive comparison against other methods. Even

though RNNs deliver very strong results in domain-specific NLP tasks, for a general-

purpose learning approach, Wieting et al. illustrated in [63] that term-averaging

still outperforms DL techniques. In addition, RNNs can not implement parallelized

learning, due to their sequential nature, thus being inadequate in cases where the

volume of information is huge.

Currently, WEs have become the building blocks for representing text features in

NLP tasks. Vectorial meaning is one main advantage of these structures, nonethe-

less being non-contextual entities, somehow limits their performance in several cases.

This is why Language Models (LM) have recently emerged, to produce contextual

embeddings, trained over larger corpus, using SoA Deep Neural Networks (DNN).

Take for instance LMs such as Embeddings from Language Models (ELMo) [21] and

Bidirectional Encoder Representations from Transformers (BERT) [64]. Among sev-

eral objectives, such as translation, question answering, text generation or even lan-

guage understanding, these new LMs can be employed in the same manner of WEs,

to produce contextual word vectors, which have already performed better in several

NLP tasks. The second novel proposed model in this thesis work, will demonstrate a

transformer based architecture that contextualize WEs, whilst encoding latent fea-

tures which provide a very e↵ective and competitive performance. At the same time,

it addresses the shortcomings of RNNs regarding parallel learning, hence presenting

a more e�cient solution.

2.7 The Uprising of Deep Learning

Artificial Neural Networks (ANN) can trace their beginnings as far as the 1960’s of

last century. They are not by any means a “modern” technology. Then, in the 1990’s
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they boomed again but as the new millennia started they went into oblivion once

again. It was not until the early 2010’s that ANNs started to blossom once more

[53]. It was the beginning of a new era, and all the past shortcomings that kept

ANN from truly succeeding were overcome, with the advent of a↵ordable technology

and decent amounts of information. The idea behind ANNs is that they can emulate

the behavior of biological neurons, as in the human brain. The several parts of

their inner mechanism such as feed forward pass, backpropagation, loss functions or

gradient optimization could not be e�ciently processed because of the lack of proper

computational power and su�cient data to be trained on [65]. But as the 2010’s

decade started, Graphics Processing Units (GPUs) were put to new uses besides

gaming and multimedia processing. GPUs have the ability to process with great

speed and e�ciency matrix operations, such as those needed in an ANN algorithm,

thus a new application of GPUs was envisioned.

Nowadays GPUs are quite a↵ordable, almost any researcher, academic or student

can easily have access to proper GPU processors. Also, the CPU, RAM memory and

storage needed to complement them are also very inexpensive. In addition, since the

beginning of the massive access to the Internet in the mid 1990’s, digital data banks

have been geometrically growing ever since. For many years the use of such amounts

of data was limited to the output of traditional transaction-oriented information pro-

cessing systems. Then, analytical processing applications such as business intelligence

or data mining started to conceive a new way to address great amounts of information

to produce “knowledge”, thus a new set of concepts started to flourish like Big Data,

Data Science and of course Deep Learning (DL) [17].

As of now, the many everyday applications of DL include but are not limited

to: image and video recognition for security usage, proper multi-lingual translation,

voice recognition, biometric identification, intelligent assistants, automated customer

service and automatic digital content production [4, 17]. It is clear the relevance of

DL nowadays, and NLP is an area that continually benefits from research in it. In the

AP field DL has yet to become a predominant trend, nonetheless the last couple of

years have seen several studies that incorporate DL concepts. The reader will notice

in next chapters, that the second proposal in this work addresses AP tasks by using

DL ideas, outperforming SoA DL strategies in several international shared tasks.
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2.8 Recurrence: an algorithm to remember

RNNs is a family of several architectures that are meant to tackle problems with

a sequential nature. Take for instance the stock market or the weather prediction,

these are considered time series type of problems [17]. Natural Language Processing

(NLP) is also considered a sequential task, since most languages in the world are

processed by humans as sequences of tokens (e.g., words, ideograms, pictograms).

Regardless of the dialect, most languages are processed either as left-to-right or right-

to-left progressions, which makes NLP a legitimate problem to address by the use of

RNNs. The original RNN architecture has evolved drastically through the last decade,

but the original idea still remains the same. Much like humans process sequential

information, by “remembering” past details to predict the immediate future, RNNs

also make use of di↵erent memory structures called cells for recalling important past

facts, that might be relevant for the current piece of data being analyzed [17].

There are several recent successful stories of the use of RNNs. For example the

work of Liu et al. in [66]. The authors of this research attempted a multi-topic

sentiment categorization of emails using a Bidirectional Long-short Term Memory

(BiLSTM) network. Their results showed a clear success of their approach. Another

interesting example of the application of RNNs can be found in the work of Chow

[67]. The author of this sui generis research focused on the prediction of auction

prices of licence plates. In several countries the numbers, letters or even pictograms

that appear in a licence plate can be chosen by the driver. In highly superstitious

populations such as the Chinese, this is a paramount activity [67]. The author at-

tempted the forecasting of the price using a NLP approach with the use of a RNN.

By using 13 years of historical auction prices, the author was able to justify up to

80% of price fluctuations.

Although neither of the two approaches presented in this work makes direct use

of RNNs, it is important to establish their importance in the NLP field, since until

just a couple of years RNNs were the best choice to approach NLP endeavours. In

addition, RNNs are the immediate antecedent of current SoA DL methodologies, such

as the transformer, directly related with this thesis.
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2.9 Attention Please!

Attention mechanisms have become very popular in the NLP community in the last

couple of years. The pivotal paper Attention is All you Need [68] came as a game

changer. Attention networks simplify RNNs, which in turn have produced the also

novel and momentous architecture known as the transformer. What this type of

architecture mostly do is compute the “importance” of the words in context of the

neighboring terms, related to past and also future tokens, eliminating the need for

complex memory cells like LSTMs or GRUs [69]. Most current research works done

in the NLP field now make use of attention mechanisms, sometimes along with RNNs

or even just as a transformer. For example recommender systems, that could vary

from product suggestions to even hashtags proposals for images or microblogs. In the

studies of Liu et al. and Li et al. in [70, 71], they make use of RNNs with attention

mechanisms to guide the learning of the network over information of interest that

can be relevant to the task at hand. In addition, another NLP field of interest is

the analysis of quality in language, for example the quality of a given text could be

assessed from the point of view of semantics, an expert’s opinion or popularity among

readers. The work in Luo et al. in [72] propose a RNN with an attention mecha-

nism that o↵ers a faster methodology to evaluate the quality of English texts. Then,

there are cases of DL architectures that discard memory cells and make use of only

attention mechanisms, this is the situation with the work of Liang et al. in [73]. The

authors proposed an attention based network that addresses the rating of products

through review information. Their approach devises a specific attention module to

deal with the user’s preferences and the features of the products they are reviewing.

Also, attention mechanisms can be added to other type of networks, take the exam-

ple of Rizzo et al. in [74]. The researchers approached the problem of automatic

text generation with the help of an Adversarial Network, that implemented a self-

attentive mechanism to improve the outcome. Finally in [75], González et al. used

and encoder module derived from the transformer architecture to contextualize WEs

trained over Twitter collected data for detecting irony in such social media platform.

They attained very good results, achieving 1st and 2nd place in two international

competitions. In deed “attention” in the context of NLP delivers outstanding results.

Nonetheless, it might not be “all you need”, as the lector will see in Chapter 5, The

Profiler architecture proposed in this thesis demonstrates a combined e↵ort of “at-
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tention” and latent extracted features, which delivers better performance than using

just the former.

2.10 Merged algorithms or the origin of symmetry

Multitask Learning (MTL) is a way to enhance the generalization and possibly the

prediction prowess of a neural network. It works by merging training samples from

multiple tasks (targets). The sharing of these training instances guides the model

towards learning to generalize better [17]. Even though MTL actually precedes DL for

more than a decade, in the NLP field has recently become a feasible option to explore

[76]. Take for instance the work of Akhtar et al. in [77]. In this research work the

authors tackled simultaneously the tasks of aspect sentiment classification and aspect

term extraction, since this problems are related (actually are co-dependent) [77]. The

MTL approach employed by the authors fuses a BiLSTM network, a self attentive

module and a CNN, achieving competitive results in three datasets in the English

and Hindi languages. Likewise, the work of Lu et al. in [78] uses an autoencoder

generative model to address two tasks: learning text representations and sentiment

analysis of several Amazon reviews datasets. They hypothesize that both tasks are

somewhat connected and the combined learning of them results in an improvement.

Their experiments attained SoA results, outperforming methods based in single task

learning. Moreover, the currently relevant phenomena of taxi transportation and/or

ridesharing services such as Uber, can be optimized using a blend of DL and MTL

approaches. That is the idea of Luo et al. in [79], where the authors of such research

attempted the forecasting of the demand by examining spatiotemporal dependences to

establish causality relationships among several tra�c zones. This could help stabilize

the demand in under and/or over supplied areas [79].

The premise of learning multiple “things” as seen in MTL, can be used from the

stand point of features. Instead of learning to predict several targets, we can simul-

taneously learn di↵erent types of features in order to predict one target. That is the

case of the Wide Deep Learning (WDL) architecture proposed by Heng-Tze Cheng

et al. in [13]. They proposed a joint learning approach built from a wide and a deep

component. Their objective was to merge the ability to memorize features of wide

models (e.g. logistic regression) and the generalization prowess of deep models for
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more accurate recommender systems, such as those used for the Google Play store.

Departing from ensemble approaches, the WDL method combines the output of both

models using a weighted sum, then uses a common loss function for joint training,

whereas ensemble models employ a separate training phase, only to combine their

respective outputs in a voting strategy, even requiring more computational resources.

A natural question can be posed from this “joint” architecture, such as what each

component is learning. Nguyen et al. tried to answer this argument in [80], by iden-

tifying an emerging block structure that varies depending of the form of the network.

Ultimately it can be presumed that this block, although constantly present, might

represent di↵erent modes of learnt features depending on the task addressed. These

concepts will be revisited in Chapter 5, since they were used to inspire the proposal

of a novel DL architecture called The Profiler, useful in AP tasks.



Chapter 3

Theory Framework

In this chapter the reader will find the explanation of theoretical concepts, employed

as scientific basis for the proposal of two novel methodologies, which are the central

point of this thesis. This chapter will try to clarify the intended purpose of several well

known Machine Learning (ML), mathematical and statistical methods and techniques,

so the lector can fathom the ideas behind the proposed approaches.

3.1 Machine Learning and its types

ML is a sub type of the Artificial Intelligence (AI) field. Its main premise relies in

producing algorithms that could learn from data. Opposed to traditional Computer

Science (CS) programs, the behavior of a ML technique is not pre-programmed. ML

tries to mimic the human way of learning. Either a person could learn by example

(e.g. the colors, letters), or they can learn by analyzing non-categorized information

by trying to find intrinsic patterns within data [17].

3.1.1 Supervised Machine Learning

This type of learning uses datasets comprised of samples formed by features, and a

specific target. The latter could be presented in the form of a label or a value. When

producing datasets for Supervised Learning (SL), it is important to make sure that a

fair amount of samples are available, since ML algorithms perform better with a vast

number of samples [65].

23
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3.1.1.1 Classification

Depending on the target of the dataset samples, a ML problem could be posed as

a classification task. This consists of trying to predict the category of a specimen

(e.g. gender of a person, type of a flower) [65]. Fig. 3.1 depicts how a supervised

classification task works.

Fig. 3.1. Classification in two dimensions.

3.1.1.2 Regression

When the target is a value to predict, usually in the form of tgt 2 R = {x 2 R}.
The task is said to be posed as regression. Many real life problems such as predicting

the market price of a real state, time series or even the stock market fall into this

category. Fig. 3.2 shows a typical regression problem in two dimensions [17].

More often than not, ML problems are tackle with multi-dimensional large datasets.

In Fig. 3.1 and Fig. 3.2, for educational purposes only two dimensions and a few

samples are depicted. In order to show geometrically a representation of data, several

dimension reduction techniques can be used, such as t-distributed Stochastic Neighbor

Embedding (t-SNE) and/or Principal Component Analysis (PCA) [69, 81].
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Fig. 3.2. Regression in two dimensions.

The Author Profiling (AP) problem tackled in this thesis is addressed as super-

vised learning, since all available datasets are labeled (categorized). Then most tasks

are posed as a classification problem (e.g., gender or age prediction), and just a few

ones as regression problems (e.g., personality traits).

3.1.2 Unsupervised Machine Learning

Most of the datasets available for ML algorithms are not labeled, since this is a costly

task. Unsupervised learning (UL) deals with such information banks, frequently by

finding underlying patterns [17]. Fig. 3.3 depicts how four di↵erent classes could

cluster in a two dimensional space. The key of an unsupervised learning algorithm,

is to find the pattern among the dataset points, so that it could either help a labeling

sub task or even extract knowledge from it. UL techniques are mostly used for

clustering, anomaly detection, visualization and dimensionality reduction. Among the

most frequently employed UL algorithms we can find: K-Means, Principal Component

Analysis (PCA) and Distributed Stochastic Neighbor Embedding (t-SNE) [53, 81].
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Fig. 3.3. Four di↵erent clusters in two dimensions.

3.2 Machine Learning and its di↵erent algorithms

Nowadays, ML techniques varies from traditional approaches to State of the Art

(SoA) architectures. Even though Deep Learning (DL) has caught the main spotlight,

traditional methodologies are still relevant. In the next few lines, the main ideas

behind several traditional and modern ML algorithms are explained, all of which

have been employed to some degree in the current thesis.

3.2.1 Support Vector Machines

Created in the 90’s by Vladimir Vapnik et al., Support Vector Machine (SVM) is an

algorithm with a strong mathematical support behind it. Its extraordinary e�cacy in

small to medium size problems (where the training samples are not huge) and feature

complexity, makes it a favorite among the ML community. It can be employed to

tackle linear and non-linear problems, and also it can be used in both classification

and regression tasks [65]. Since SVM was one of the top predictor algorithms in the

first proposal of this work, it is important to understand its mechanism, as it will

make it easier to grasp the reasons behind its success.
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SVMs are known to be very sensitive to non-scaled features, so it is recommended

a pre-processing step of the data, which needs to include a form of scaling or normal-

ization of the features [69]. Fig. 3.4 depicts a linear SVM classifier. Take notice in

the circled samples that are precisely located very near the sides of the street, these

are the support vectors.

Fig. 3.4. A traditional linear SVM classifier with a hard margin classification approach.

3.2.1.1 Hard & Soft margin classification

When the task at hand is classification, the aim of the SVM algorithm is to find a

“street” as broad as possible between the training samples of the dataset [69]. The

solid line in Fig. 3.4 is known as the boundary between classes, and the objective is

to position the dashed lines parallel and as far away as possible from the boundary,

without allowing any sample to invade the street, since that is considered as a miss

classification or error, this is known as hard margin classification. Because many

problems are not as “ideal” as the one displayed in Fig. 3.4, a policy that allows

“a few” samples to be misclassified in favour of a wider and more general solution

would be preferred in some cases, this is called a soft margin classification. The
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hyperparameter C is used to adjust this margin, this variable allows to penalize the

model so a suitable trade-o↵ between accuracy an generalization can be achieved

[69]. The bigger the penalization (C ) the less of the samples that are allowed to enter

the street. On the other hand, when the C value shrinks, more samples are allowed

into the street, which decreases the accuracy in favor of a more general performance

across di↵erent datasets [69]. Fig. 3.5 shows two models that allow a few samples

to be miscategorized to favor a model that could generalize better in unseen data.

The right plot allows fewer mistakes (larger C ), increasing the accuracy of the model,

whilst the left plot is less accurate but probably performs generally better among

several datasets (smaller C ).

Fig. 3.5. Hyperparameter C penalizes the SVM model, so few (big C ) or many (small C ) errors
are allowed inside the “street”.

3.2.1.2 Non linearly separable data

The samples in Fig. 3.5, represent a clearly linear separable problem, thus a SVM

classifier could perform generally well. But many other datasets are not as easily

approachable. When this happens some transformation could be applied to the fea-

tures, so the instances in the dataset could be separated [69]. Take for instance Fig.
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3.6, we can see the same dataset in one and two dimension. In the left plot, the uni-

dimensional version of the dataset is clearly non linearly separable, whilst the same

dataset with a two-dimension projection can now be separated through the green line.

Fig. 3.6. A dataset projected in one dimension in left plot, and two dimensions on the right, using
a quadratic function.

Other techniques that could render a higher dimension projection include similar-

ity functions [69]. Take for instance left plot in Fig. 3.7, the uni-dimensional dataset

explained before now can also be projected into a higher dimension space using sim-

ilarity functions. The left plot in same figure shows similarity functions X2 and X3,

established by two landmarks from the original dataset, where all points can now be

extended into a new two-dimension space by calculating the similarity of each point to

each function. Ideally there could be as much landmarks as points in the dataset, buy

for explanatory purposes only two are chosen. The new features are computed using

Eq. 3.1, which is a Gaussian radial basis function (Grbf). Where x is the point to be

projected into a new dimension, ` is the landmark of the similarity function, and � is

a hyperparameter that regulates the width of the similarity function [69]. As shown

in Fig. 3.7, using the Grbf function explained above, we can see the one-dimension

dataset transformed into a two-dimension space, is now linearly separable.
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⌘
(3.1)

Fig. 3.7. Same one dimension dataset projected into a two dimension space by a Gaussian
similarity function.

3.2.1.3 The kernel trick

As just explained before, when a dataset is expanded into more dimensions, the

likelihood of now being linearly separable increases. But when dealing with huge

datasets (as most of the times happens), the amount of computational resources to

actually project data points into new dimensions is huge. This is why the real benefit

of SVMs is to find the optimum “street” between classes in a n-dimensional space

that could be separable by an hyperplane, with no additional computational cost for

projecting into more dimensions [69]. The SVM algorithm can accomplish this using

the kernel trick.

To better understand this let us consider a few mathematical concepts. If you

would want to separate data points in a two-dimensional space, a line would be

perfect to accomplish that. From analytical geometry we know that a line equation

is represented in Eq. 3.2. Where m is the slope of the line, and b is the o↵set in the

y axis.
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y = mx+ b (3.2)

Eq. 3.2 works as a “separator” in a two-dimensional space, but this concept could

be extrapolated to any n-dimensional space, where a decision function of the same

dimensionality intersects with it, producing a hyperplane of n � 1 dimensions, that

serves as a boundary frontier for classification. Eq. 3.2 can be generalized for any n-

dimensional space producing Eq. 3.3, where W> is a tensor of weights and X a tensor

of features [69]. In Fig. 3.8 a two-dimension dataset and a decision function intersects

in a one-dimension hyperplane (a line), which serves as the “street” (frontier) between

two classes.

W>X = 0 (3.3)

Fig. 3.8. A hyperplane and a decision function of n-dimensions, will intersect over a decision
boundary of n� 1 dimensions.

If we would want to produce a very accurate model, then the samples in the

“street” need to be restricted. At the same time, it is useful to make the “street”

as wide as possible, in favor of a model that generalizes the best. In deed is evident
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that if W increases, the “street” becomes narrower, and the opposite is true when W

declines. This is why the model becomes an optimization problem where we need to

minimize W [69]. Simultaneously we need a safe margin within said W (width of the

“street”), that needs to be free of data points, that means that no errors are allowed

inside. In Eq. 3.4 we can find the optimization problem for a hard classification

strategy. Let us say that the width of the “street” is 1, then take special attention to

ti, which is a value that becomes 1 if the data point is above the boundary, and �1

otherwise. By doing this we ensure that no data point is allowed within 1 unit from

the center of the “street” (decision boundary) [69].

minimize
w,b

1

2
W>W

subject to ti
⇣
W>Xi + b

⌘
� 1, i = 1, . . . ,m

(3.4)

The reason to minimize 1
2W

>W (which is equal to 1
2kW

2k, as a result of matrix

multiplication rules), instead of kWk, is because it is has a useful di↵erential [65, 69].

If a soft margin classification is needed, then a few additions to this problem could

be made. In Eq. 3.5 we can now see a cost term for each data point that crosses the

frontier, where ⇣i is a slack variable, that adjusts how much a data point is allowed

to “enter” the “street”, and C is the hyperparameter that penalizes the errors, that

being said the higher the value of C the less samples are allowed into the “street”

[65, 69].

minimize
w,b

1

2
W>W + C

mX

1

⇣i

subject to ti
⇣
W>Xi + b

⌘
� 1� ⇣i and ⇣i � 0, i = 1, . . . ,m

(3.5)

This optimization problem is convex and quadratic with linear constraints. To

solve it, a technique known as Quadratic Programming is often employed [69]. Eqs.

3.4 and 3.5 work pretty well with linearly separable problems. Nonetheless when the

dataset needs a higher dimension projection to become linearly separable, this primal

“form”of the problem becomes computationally expensive. The concept of duality is

very useful in mathematics, that implies that a dual form of the problem also exists.

Under certain circumstances the solution to the primal and dual problems is the

same, and SVM happens to meet this conditions. The advantage of solving the dual
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form is that it admits the use of the kernel trick [65].

To pass from the primal to the dual form of the problem, a method called the

Lagrange multipliers is employed. Only this method exclusively allows equality con-

straints, that is why the generalized Lagrangian equation is used instead, which also

accepts inequality constraints. When the Karush–Kuhn–Tucker conditions are met

(SVM also complies with these conditions), the constraints are included in the opti-

mization equation, multiplied by an ↵ value (Lagrange multiplier) [65, 69]. Eq. 3.6

shows this generalized Lagrangian for the SVM problem.

L
�
W, b,↵

�
=

1

2
W>W �

mX

1

↵i

⇣
ti
⇣
W>Xi + b

⌘
� 1
⌘

↵i � 0, i = 1, . . . ,m

(3.6)

If the partial derivatives of this generalized Lagrangian with regard to W and b,

are equal to 0 (to find the stationary points), then the results for W and b can be

introduced into Eq. 3.6, and with a little algebraic magic we now have Eq. 3.7.

minimize
↵

1

2

mX

i=1

mX

j=1

↵i↵jtitjX
>
i
Xj �

mX

i=1

↵i

subject to ↵i � 0, i = 1, . . . ,m

(3.7)

Now Eq. 3.7 is also the dual form of the problem, if we can find a solution that

minimizes this form, it will be also a solution for the primal form. Pay attention to

↵, t and X, for the dual problem can implement them as matrices, which allows for

the kernel trick. Now Quadratic Programming can be used to solve the dual problem

[69]. Once the optimal ↵̂ is found, now the optimal cW can also be computed with

Eq. 3.8.

cW =
mX

i=1

↵̂itiXi, ↵̂i > 0 (3.8)

Then, the kernel trick consists in finding a transformation of the features in the

dataset, without the computational cost of actually performing the projection [65, 69].

Let us say that exists a � function that is responsible for the projection. Then in

Eq. 3.7 the dot (also known as inner) product X>X would have to be in the form of

�(X)>�(X), which depending in the transformation could mean a high computational
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cost due to the increased number of features; for example a Grbf transformation could

render an infinite number of features, which ultimately is impossible to compute. But

there is an algebraic equivalence that says that �(X)>�(X) =
�
X>X

�2
, thus we can

compute the dot product of vectors X>and X without having to perform, not even

know what � actually is. K = X>
i
Xj in Eq. 3.7 is also known as the Gramian matrix,

which is the dot product of the original features, and can be used as a lookup table

[69].

Finally, the training phase of a SVM algorithm consists in solving the optimization

problem discussed before. Then all the training instances that verify Eq. 3.9 are

known as support vectors. Next, the remaining training instances can be disposed of,

because only the support vectors are needed [69].

ti
�
W>Xi + b

�
= 1 (3.9)

Knowing the support vectors, optimal o↵set b̂ of the “street” can also be computed

with Eq. 3.10. The reason to compute the mean of the support vectors is to find a

more stable value [65].

b̂ =
1

ns

mX

i=1

⇣
ti � cW>Xi

⌘
(3.10)

Then, the testing stage consists of making predictions with decision function 3.11.

Notice that K
⇣
Xi, Xn

⌘
is the dot product between the new test data point to be clas-

sified and the support vectors Xi, since remaining training instances were discarded,

as only support vectors are needed to perform the classification task. This also makes

prediction even faster, as a result of a smaller dot product [65].

hcW,b̂

⇣
�
⇣
Xn

⌘⌘
=

mX

i=1

↵̂itiK
⇣
Xi, Xn

⌘
+ b̂

↵̂i > 0

(3.11)

3.2.1.4 Regression with SVMs

Regression problems can also be solved using a SVM, the trick is to invert the ob-

jective function. In this case the aim is to fit as many training instances in the

“street” as possible. Those samples outside the “road” are the errors, and the sup-
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port vectors remain the same [69]. Fig. 3.9 shows a Support Vector Regressor. The ✏

hyperparameter now controls the width of the “street”.

Fig. 3.9. The regression version of a Support Vector Machine, where training instances are fitted
into the “street” as close as possible to the target value (ŷ

line).

3.2.2 Decision Trees

The Decision Trees (DT) algorithm is a very straightforward technique that deals

with classification and regression problems as well. The main advantage relies in its

structure being almost self explanatory, this means that the set of rules that devises

are very easy to understand [65, 69]. The version of DT employed for this work is

that implemented in scikit-learn ML library, which makes use of the Classification and

Regression Tree (CART algorithm), that only produces binary trees [82]. Take for

instance the very well known UCI wine dataset [83], a DT with a maxdepth=2 is train

over 2 of the 13 features available (for graphing purposes) (See Fig. 3.10). The root

node is the depth=0, the next level depth=1 and the final tier depth=2. All nodes

have four parameters and a rule, except the leaves nodes in last level, that have no

rule since it is here where the final classification occurs. The two features selected out
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of the 13 available are proline (an amino acid present in wines) and OD280/OD315

of diluted wines (a measurement of protein content). The rule in node 0 divide the

instances into those that have a proline level less or equal to the threshold value 755.0.

The gini parameter is a measure of the “purity”of the node (more on this later). The

samples parameter is the number of instances that are processed by the node, value

is a vector of nclasses that contains the information of how many instances of each

class the samples are divided into. Finally the class parameter tell the category of

the majority of instances in such node.

Fig. 3.10. A Decision Tree of the wine dataset.

The DT algorithm works by optimizing (maximizing) the “purity” of the partition

established by the gini parameter. The purity of a partition is determined by how

many classes of the minority co-exists within the majority class, that being said the

less of the minority classes the more “pure” the partition is. A partition with 0

instances of minority classes is considered totally “pure”. There are several ways to

compute the “purity” of a partition, two of the most useful are Gini impurity and

Entropy, the latter is borrowed from the concept of entropy in information theory

[65, 69]. Eqs. 3.12 and 3.13 are used to determine the level of “impurity” of each

partition.
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Gnode = 1�
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log2
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⌘
(3.13)

DTs make possible to estimate the probability of a sample of belonging to a specific

class, which could not be computed with SVMs. Furthermore, the decision boundaries

obtained when minimizing the “impurity” of partitions tend to appear orthogonal.

This is the reason that often times a pre-processing stage such as Principal Component

Analysis (PCA) is used to “align” the data, since PCA computes the components in

a descending order of variability, and also are orthogonal between them [69]. In Fig.

3.11 the decision boundaries attained with the DT explained in Fig. 3.10 are set

to a maxdepth=2. It is important to regularize the model, because if no max depth

hyperparameter is defined, the DT will continue to divide until the error is the closest

to 0 or it is impossible to continue, which will conclusively overfit the model.

Fig. 3.11. The boundaries of a Decision Tree of the wine dataset, with depth=2.
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3.2.2.1 Regression with DTs

As with SVMs, the DT algorithm can also be applied to solve regression problems.

The mechanics is quite similar to the classification task. Instead of predicting a class,

now a DT needs to forecast a value, only this is achieved by computing themean target

value of all instances in a partition. Also, instead of minimizing the “impurity”, an

error metric is now optimized, for example the Mean Square Error (MSE), between

the target value ŷ of a node and the average target values of all instances in the

partition. Just like with classification, if a DT regressor is not regularized, it most

likely will overfit [69].

3.2.2.2 Random Forest

As well as SVM, Random Forest (RF) also performed admirably in the first proposed

methodology of this thesis. RF is a collective method known as ensemble learning

that demonstrates two heads are better than one, this is also known as crowd wisdom.

For example, let us have several decision tree classifiers, we can train them on a subset

of the train dataset and then make predictions by a voting rule. The class that gets

the most votes is the winner. This “democratization” of the decision has been proven

e↵ective before. Take for instance a set of weak learners, meaning predictors that are

barely better that a toss coin. The democratic decision of such learners will be more

precise that each one of them on their own. This can be explained by the theory

of large numbers [69]. As an example imagine a humongous bowl of shiny red balls,

then suppose we ask a very diverse (in age, gender and even education background)

set of 20 persons, to guess the number of balls inside the bowl. The answers would

di↵er from an underestimation to probably an overstated number. Nonetheless, if we

average (aggregate) the results, this answer will be the most accurate one. The same

is true for a group (ensemble) of classifiers. If we make a group of decision trees, train

them on random subsets of the train data, and make a voting prediction, then we

have ourselves a Random Forest (RF).

The reason why crowd wisdom works is because of the diversity of the predictors.

For an ensemble method to work, the individual classifiers need to be diverse, meaning

that the errors they make during prediction do not correlate between them (which

could happen if they are trained over the same dataset). This can be solved by

aggregating predictors that are very di↵erent in their inner structure, for example
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a SVM, a DT and an Artificial Neural Network (ANN) [69]. But many times the

computational resources during training of such diverse predictors can be prohibitive.

A more homogeneous approach would be to use a unique type of estimator (DTs

for example) and make them independent. This can be achieved by using random

subsets of the training data in each DT (sampling). If this sampling is performed

with replacement we call it bagging (bootstrap aggregating), otherwise it is called

pasting. When the voting is made using the final classification choice of each DT, this

is called hard voting. Some algorithms such as DTs allow to estimate the probability

of each class for each testing instance (SVMs do not support this), then if we use this

values instead of the final decision it is called soft voting, which often times deliver

better accuracy[65, 69]. The bagging technique introduces a higher bias, but as the

DTs end up being less correlated between them, the variance decreases, which results

in higher accuracy [65].

3.2.2.3 Extra Trees

RFs di↵er from single DTs in the feature selection method for optimization. DT will

find the optimum feature to begin the splitting. RFs randomly sample the feature set

instead of exhaustively searching for the best feature. This favors greater diversity

among single DTs of the RF, but they still need to find the optimum threshold in the

domain of the selected feature. Extremely Randomized Trees or Extra-Trees (ET) not

only will sample the feature set, but also will sample the threshold domain, resulting

in an even faster, more diverse set of DTs, which will introduce even higher bias, and

lower variance. In practice RFs and ETs perform very similarly. From a practical

point of view, it is di�cult to anticipate which will perform better in a particular

task, this is why either (or even better: both) will deliver competitive results. As with

DTs, RFs and ETs can also be implemented for regression tasks, the principle mainly

remains the same [69]. ETs performed very similar to RFs in the first proposal of this

thesis. Between both they attained more than 50% of the top results in 17 AP tasks.

There were some other ML prediction algorithms that were tested, nonetheless only

SVM, RF and ET are explained in this chapter, since they were the best performers.
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3.2.3 Artificial Neural Networks

The second methodology proposed in this work is based on Artificial Neural Networks

(ANN). ANNs are one of the greatest contributions of ML and AI in general. It mostly

evokes the human nervous system and tries to emulate it by copying the functionality

of its principal cells (neurons). An ANN is a structure that is comprised of an input

layer, an inner structure (which could have several levels) and an output tier. It is a

supervised learning method which correlates the features in a dataset with an output

target, which can be a label or a value, so it can be used for either a classification

or a regression task. When the ANN learns how to predict targets its “knowldege”

is kept in its inner structure, in the form of weight values of the “artificial neurons”,

which are elements similar to human neurons that can be activated by a function,

creating a “memory” of patterns. Ultimately we call this process “learning” [65, 17].

The main functionality of an ANN can be summarize in two steps. First, the

forward pass processes the inputs and through activation functions decides which

neurons to “activate”. At the end of this step it is decided which class or value

is forecasted. But several “epochs” of learning must pass so the learning can be

perfectioned [53]. For each forward pass there must be a backward pass, which adjusts

the prediction in case it was wrong. The backward pass of an ANN is crucial to adjust

the inner layers so they can properly predict the target. Such backward pass starts

with a loss function (L") which gives information about how far away from the target

the network currently is. The well known Backpropagation algorithm for ANNs,

applies di↵erential calculus to provide a solution to find the slope (or gradient) of L"

with respect to the weights of the network. In other words, provides a way of dividing

the error among the neurons in the inner layers [53]. An ANN can be viewed as a

function that must be optimized, that is minimize L". To do so, an optimizer must be

employed: Stochastic Gradient Descent (SGD) is one of the most used algorithms to

optimize ANNs. First of all, an optimizer solver must make use of the Backpropagation

algorithm to compute the gradient of L", then it minimizes the error as the training

epochs go by. Among the most used loss functions we can find the Mean Square

Error, Mean Absolute Error and the Mean Bias Error for regression problems, as

well as Hinge Loss and Cross Entropy Loss for classification tasks. On the other

hand, the most used optimizers include: SGD, Adam, Adamax and RMSprop. Fig.

3.12 depicts a classical Artificial Neural Network [65, 17, 53].
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Fig. 3.12. A basic ANN architecture.

3.2.3.1 Recurrent Neural Networks

Although Recurrent Neural Networks (RNN) were not directly employed in this thesis,

they are the immediate predecessor of the transformer architecture, which in deed

inspired the second proposal of this work (explained in Chapter 5). RNNs are

very similar to a simple ANN. However, RNNs address an issue ANNs often struggles

with. When processing sequences, an ANN will not be able to “remember” old inputs

that may have an influence on the current sample. Time series and Natural Language

Processing (NLP) problems need to recall past inputs in order to better predict future

targets [69]. A RNN can accomplish this by using a partial prediction to feed back

the input in next step. So an input of a RNN will aggregate the output of last step

(except in the beginning) with the current input vector, this stages are called time

steps [17, 69]. RNNs can be used for several tasks depending on the architecture

implemented. For instance, the partial output in each time steps could be used as

a feature extraction technique, producing some type of embedding; an out of phase

pair of stack RNNs are often used for translation jobs. The heart of a RNN can be

explained by Eq. 3.14. Where vectors Wx and Wy are the weights of the current
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input and the last step output respectively, Xt and Yt�1 are the current input and

last step output, � is the output activation function, and b is the bias [17, 53].

Yt = �
�
Wx

>Xt +Wy
>Yt�1 + b

�
(3.14)

There are several RNN variants that try to optimize “how much” the network

can remember. This is done by structures called memory cells. Depending on which

type of memory cell the RNN uses, two sub-architectures are commonly implemented:

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). LSTMs and

GRUs can be viewed as specialized RNNs, which can make some tuning to determine

what past outputs must be more important when enriching the current input. This

allows the network to remember some past outputs better than others, depending on

which contributes the most [53]. Even though GRUs are newer and more sophisticated

than LSTMs, the latter ones are more frequently used. In Fig. 3.13 we can see a RNN

architecture, as explained mathematically by Eq. 3.14, unfolded through a time t.

Fig. 3.13. A RNN architecture, where each current time step uses the last one to feed back the
current input
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3.2.3.2 The Attention mechanism & the Transformer architecture

The success of RNNs in tasks likemachine translation is greatly documented. Nonethe-

less, this networks take huge computational resources. In 2017 a milestone paper

called “Attention is all you need” [68] proposed a novel network architecture called

the transformer, capable of paying attention to input sequences at di↵erent levels,

without the need of any LSTM or GRU cells, which makes this architecture far more

e�cient to train. In Fig. 3.14 we can see the transformer network, explained in the

context of a translation task. First we identify the encoder at the left and the decoder

at the right. Both encoder/decoder are stacked N times. In the train step, the decoder

receives the target sentence as well as the output of the encoder at the N stack to

match the same level in the decoder. In the testing phase the decoder can not be fed

the target sentence obviously, so the whole network is called token by token shifted

one time step to feed the decoder with the previous output. Take special considera-

tion in the Multi-Head Attention module, this layer encodes the relationship of the

current word with the rest in the same sentence. Since theMulti-Head Attention layer

is time-distributed (meaning that all words might be processed in parallel), the model

has no information of the position of the words in the sentence, which is needed to

know the context. This is why the positional encodings are fed at the beginning of the

encoder and decoder. This embeddings have the positional information of the words.

Notice the Masked Multi-Head Attention in the decoder, it is masked because only

past words are allowed to be examined in this layer. The Multi-Head Attention layer

is based on the Scaled Dot-Product Attention, which serves as a look-up dictionary

for a sentence [69]. Take for instance the phrase “Matt played a mean guitar last

night”. The dictionary would have to be like this: Subject: “Matt”; Verb: “played”;

Indicative: “past tense”. Only the encoder does not come up with this straightfor-

ward dictionary. Instead it has a tensor representation of such look up table. This

tensor dictionary is composed of three matrices, Q, K and V , representing a query,

a key and a value matrix respectively. This dictionary works by computing a sim-

ilarity score between the query and the key (the scaled-dot product), then it uses

a softmax function to compute the value of the key. Since the encoder was able to

encode di↵erent levels of information (e.g., the type of word, the indicative), then we

also need several layers of Multi-Head Attention, this is why in each tier the several

characteristics of each word are projected onto as many spaces, this is how the trans-
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former is able to pay a more productive attention to a text sentence. The merit of

a transformer is that outperforms RNNs by “seeing” the whole document at once,

without the need of sequential processing and specialized recall modules (e.g., LSTM,

GRU), which translates in a more e�cient training stage (i.e., parallelized learning)

[68, 69]. Eq. 3.15 explains the scaled dot-product that allows the multi attention span

of the transformer.

Attention
�
Q,K, V

�
= softmax

⇣ QK>
p

dkeys

⌘
V (3.15)

Fig. 3.14. The novel transformer architecture.
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3.3 Document classification

The main objective behind both proposed methodologies of this work for tackling

AP tasks, can be summarized as a Document Classification (DC) task. DC is one

of the main and most approached problems in NLP. It encompasses a broad set of

activities that include areas like library, information and computer sciences. From

the perspective of computer sciences, DC aims to automatically categorize digital

documents, which might include audio, video and text. Digital textual documents are

of particular interest for NLP endeavours. It involves a vast number of techniques

such as machine learning algorithms and statistical value extraction [53].

3.3.1 Textual representations & feature engineering

For DC or AP tasks, one of the main and current issues is Textual Representa-

tions (TR). Several methods have been tried over the years with satisfactory results.

Nonetheless, the ever-changing scene of ML and NLP applications, often require this

techniques to keep evolving. This is the reason why word and paragraph encoding

methods have emerged massively in the last few years [17]. What are now consid-

ered “traditional” approaches include one-hot encoding and Bag of Words (BoW)

methods; this techniques address TR from vocabulary and statistics point of views

respectively. One-hot encodings produce a vocabulary dictionary with a numeric id

for each word, then for representing sentences, it generates a vector of n dimensions

(being n the number of words in the sentence) with the proper word id in the cor-

responding vector position. To represent single words, a one-hot encoding disperse

vector will be created, with m dimensions (being m the number of words in the vo-

cabulary), and with a number 1 in the position of the corresponding word, and zeros

in the rest of the positions (disperse vectors) [53]. Fig. 3.15 shows a sentence encoded

as a one-hot encoding vector.

3.3.1.1 term frequency–inverse document frequency (tf-idf)

The term frequency–inverse document frequency (tf-idf ) is a numerical statistic often

employed in NLP tasks (e.g., information retrieval) as a term weighting value[53].

This value can determine the importance of a word in a set of documents. The ra-

tionale behind this number is that a word’s “importance” is related to the frequency
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Fig. 3.15. The One-Hot Encoding method allows a very straightforward representation of text.
Words that do not belong in the vocabulary are identified by a out of vocabulary (oov) token.

it appears in documents. However, a simple count of the number of times a term

appears can be deceiving. Take for instance stop words, which are terms that are

very frequently used but add no significant value towards the characterization of a

document [53]. The set of stop words can vary between languages, examples of this

words are articles and some prepositions. If a stop word ’s frequency is taken into

account, it can falsely magnify its importance. The tf-idf statistic not only considers

the frequency of a term, but also o↵sets this value by decreasing its amount when a

word is used frequently in most of the documents, which shows a non-profit behav-

ior. On the other hand, if a word appears frequently in just a few documents, then

probably its importance is far higher [53]. Eq. 3.16 demonstrates how to compute a

tf-idf value for a single word. It is worth noticing that the idf value for each word

(which o↵sets the frequency), is globally computed for the whole dataset. Observe

that both terms (tf and idf ) are computed in a logarithmic scale, due to the natural

sparsity of the counting task. The tf-idf was a very important value used for com-

puting weighting schemes in the first proposed method of this work (more on this in

Chapter 4).
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tf-idf(wn) = (1 + log tf(wn)) · log
N

df
(3.16)

3.3.2 Distributed representations

Circa 2013, Word Embeddings (WE) made quite an entrance in the NLP scene. This

novel technique encode words by understanding their meaning in the text, and by pro-

jecting its connotation into a n-dimensional space, where terms with similar meaning

tend to cluster together. WEs have greatly revolutionized the NLP field by adding

significance to TRs. WEs are considered distributed representations because opposed

to one-hot encoding vectors which are disperse, (can have as many dimensions as

the length of the vocabulary) they can “distribute” the syntactic and/or semantic

information in fewer dimensions [17]. WEs were the foundation of both approaches

presented in this work.

3.3.2.1 Non-contextual Word Embeddings

Even though WEs encode the meaning of the word by predicting the “context” (sur-

rounding terms), they are considered non-contextual. This is because only a single

embedding will be create for each term. For example, if the term “Queen” appears

in the dataset, only one WE will be produced for this term, even if the word is used

is several contexts across the dataset, like “Queen” a title of nobility, or “Queen”

the name of a rock band. This is known in linguistics as polysemy, or the coexisting

di↵erent meanings for the same word [53].

word2vec

One of the most popular WE technique, that actually has paved the road for better

improved approaches is word2vec (w2v). Mikolov et al. [8] proposed this algorithm as

a clever way to encode meaning in a distributed representation; w2v works by using a

“shallow” neural network that process one-hot encoded words from a textual dataset.

There are two variants of the w2v algorithm: Continuous Bag of Words (CBOW) and

Skipgram. The CBOW alternative is a network that tries to predict a word, given a

fixed number of neighboring words. On the other hand, Skipgram aims the opposite,

to predict the context given a word. Only the Skipgram variant is explained, since it
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is the most fruitful approach. Fig. 3.16 shows the main policy of both variants of the

w2v algorithm.

Fig. 3.16. The main architecture of the word2vec algorithm with its two variants: skipgram &
COBOW.

Skipgram is a simple neural network that is fed with one-hot encoded words in

the input layer. Then a single inner layer (hence the “shallow” motto) of neurons

will record the weights of the learning process. The aim of the network is to make a

probabilistic prediction of the surrounding words of the input term. The number of

neighboring words is determined by the hyperparameter window. Empirically it has

been documented that small window values will encode a more syntactic meaning of

the term, whilst a larger window will produce a more semantic encoding of the word

[8]. But where are the WEs? The task of forecasting the neighbor terms of the input

word is actually a “fake” task. This means that what we are really looking for is the

weights in the inner layer at the end of the training phase, these are the WEs. The

number of neurons in the inner layer is actually the dimensions of the WEs [8]. Also

empirically, WE dimensions of 100, 300 and 500 have been documented to produce

useful embeddings. Fewer dimensions than 100 are usually not as beneficial, whilst

dimensions over 500, will not deliver significant better performance, but will con-
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sume huge computational resources. Skipgram uses several “tricks” to accomplish its

purpose in a relatively fast computational time, such as hierarchical softmax and/or

negative sampling. Also it is worth mentioning that no traditional activation func-

tions are used in the inner layer, instead, transformation matrices are used to encode

the inputs into the inner layers, and then these into output vectors [8, 53]. Fig. 3.17

depicts the Skipgram variant of the w2v algorithm.

Fig. 3.17. The aim of the Skipgram architecture is to predict the context of a word, as a fake task
to produce word embeddings.

fastText

Ever since w2v became the prevalent WE method, several word embedding tech-

niques have derived from it, such as Global Vectors for Word Representation (GloVe)

and fastText [84, 85]. The latter is an algorithm that pretty much works like the w2v

Skipgram variant. The di↵erence relies on the fact that the prediction is preformed at

character level instead of words. This nuance departure from the w2v algorithm pro-

duces embeddings even for out-of-vocabulary (oov) terms, which are specially useful

for datasets with many terms of this type, such as those produced from social media
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outlets [85, 53].

3.3.2.2 Contextual Word Embeddings

To address polysemy, among other shortcomings of WEs, 2019 saw an increase in

embedding techniques, such as Language Models (LM). In this new generation of en-

coding methods the goal is to produce more advanced embeddings that deliver not

only word representations (di↵erent vectors for the word “Queen” according to its

contextual meaning), but even paragraph or whole document encodings. Up until

LMs appeared, the way to produce TRs (embeddings) for paragraphs or documents,

that is Document Embeddings (DE), usually an aggregate approach was used: averag-

ing the WEs of the terms in a document [54]. Even though this method has delivered

very competitive results, more specialized and successful aggregate procedures have

been devised, such as weighted averaging based on the characteristics of the task or

the dataset [86]. Even so, the quest for far-reaching methodologies continues. This is

why LMs are now the SoA approach to perform tasks including but not limited to:

producing WEs and DEs, translation tasks, question answering and natural language

understanding [53].

Bidirectional Encoder Representations from Transformers (BERT)

A milestone paper for the NLP community was published in 2019 called “BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding” [64].

BERT is a very potent LM that is based on the previously explained transformer

architecture. To better understand how BERT works let us consider other popular

LM: ELMo (Embeddings from Language Models) [21]. ELMo uses a LSTM network

with two staked directional layers, which process input sequences in the first layer from

left to right, and then in the second layer from right to left, finally concatenating both

outputs for the output layer. On the other hand, BERT is based on the transformer

architecture, and because it is a LM only the encoder part in needed. Departing from

ELMo, BERT “sees” the whole sentence at once, thus making it a fully bi-directional

model, but precisely because of this, it needs the positional embeddings explained

before in the transformer network [64].

To train every neural network, a task must be defined, in this case BERT uses

two prediction objectives: Masked language modeling (Mask LM) and Next Sentence
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Prediction (NSP). The aim of Mask LM is to learn to predict tokens by analyzing

the surrounding words, 15% of each sequence is “masked” with the [MASK] token.

For NSP, the network is fed with pairs of sentences, where 50% of them are truly

contiguous sequences and the other 50% are selected randomly, then the network

must learn to di↵erentiate actually adjacent sentences. Both prediction tasks are

learned simultaneously with the aim of minimizing the combined loss function of the

two approaches [64].

BERT pre-trained weights are publicly available, since it takes large amounts of

time and computational resources to train. Then it can be fine-tuned to perform

more specialized tasks [87]. This means that an additional output layer can be added

to match the task that needs to be addressed, and only this last layer is trained

(freezing the pre-trained weights), which makes the job less computationally heavy.

In addition, when fine-tuning BERT also the option to retrain the inner layers is

available, which makes small changes to the pre-trained weights. A wide impact of

fine-tuning is debatable, for some problems might work well, but some other tasks

can be less benefited from it, so the use of a BERT pre-trained model as it is can

perform just as well [88].

3.4 Evolutionary computation

The field of Evolutionary Computation (EC) is as sub area of Artificial intelligence

which imitates the evolutionary process that takes place in nature, for example in

most animal species. EC is mainly composed by several algorithms with an stochas-

tic nature used for optimization purposes. Among the most well known members,

Genetic Algorithms (GA) and Genetic Programming (GP) stand out [65]. GP was a

crucial component for devising term weighting-schemes, which is the main contribu-

tion of the first proposed approach discussed in Chapter 4.

3.4.1 Genetic Programming

GP can be viewed as a natural extension of GAs. In the late 80’s and early 90’s of

last century, John Koza invented and popularized this new kind of algorithm. The

objective of GP is to evolve computational programs, Koza has referred to GP as

an “invention machine”, capable of creating computer programs on its own [89]. For
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regression problems, features can be posed as a set of mathematical equations that

are structured as trees, which can be evolved through mutation and crossover oper-

ations, until these mathematical formulae are capable of reaching a target solution,

by minimizing the error. Then, GP is fed with a set of mathematical operators (e.g.,

*, /, +, -, sin, cos, log), constants and terminals. The features of a dataset for GP

are commonly used as terminals (variables), and an initial population of candidate

equations is created randomly as trees [65]. See Fig. 3.18, this formula is a candi-

date specimen to solve a target value, whether this equation is fit enough, will be

determine by a fitness function, which measures the error of the sample.

From the beginning of the procedure, GP’s hyperparameters are defined, these

include the number of generations the algorithm will run until, the number of in-

dividuals in the initial population, the probabilities for the mutation and crossover

operations (usually 90% for crossover and 10% for mutation), the set of mathemati-

cal operators (function set), the number of constants and the tournament size. This

last hyperparameter is used to establish how the best members of each epoch will

participate for mutation or crossover operations to populate the next generation [90].

Fig. 3.18. An example of a Genetic Programming equation tree.

Performing mutation or crossover operations on a tree equation, consists in re-
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placing certain branches of the tree, either by a random substitution or by swapping

branches between two trees [65]. For example see Fig. 3.19, a mutation operation is

performed on the candidate tree by changing one of its terminal branches with a new

randomly produced substitute.

Fig. 3.19. The mutation operator performed in a tree in a GP population.

For a crossover operation see Fig. 3.20, two of the most “fit”members of the

current population are selected (by probability) to participate in this operation. The

most right leaves of each tree will be swapped between trees, thus creating a new

pair of new specimens, that are theoretically more ‘’evolved”, meaning are more fit

to predict the target value [65].

Finally, a common “glitch” found in a GP process is called bloating. It consists in

producing huge equations (trees) by continuously creating taller trees (large number

of levels), that actually add no significant reduction in error, thus these equations,

even if e↵ective, are in no way e�cient. Various techniques to deal with bloating

are commonly introduced in the several implementations of GP available. Either

by limiting the height of the trees or by early stopping strategies, bloating can be

adequately dealt with [90]. Algo. 1 shows a general pseudocode for a standard GP

algorithm.
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Fig. 3.20. The crossover operator between two trees in a GP population.

Algorithm 1: Genetic Programming pseudocode

for i = 1 to NumOfGenerations (or until an acceptable solution is found) do
if 1st generation then

Generate the initial population with primitives (terminals, constants and
math operations) usually with ramped 1

2 and 1
2 method;

else
With current population generate a new one using crossover and mutation
operators;

end
Calculate fitness (minimize mae) of population members;
Select n members from population (tournament parameters) to participate in
genetic operations according to specified probabilities;

Create new individuals from genetic operations according to specified
probabilities;

end
Result: Return best individual in last population

3.5 Performance Metrics

Everything that is to be improved it necessarily needs to me measured. To determine

the e�cacy of ML algorithms, a reference point must be established. Depending on
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the task at hand, the success of a method is dictated by how it performs against the

expected results. For classification tasks a good judgment would be the percentage of

successful samples that are correctly categorized. In the case of regression assignments

the error with respect to the expected value is a reasonable assessment.

3.5.1 Classification metrics

There are several well accepted classification measures. Depending mostly on the

dataset (i.e., this is balanced or not) and prediction task (e.g., mimicking a human

behavior), either one or all of the next measurements can be employed:

3.5.1.1 The confusion matrix

The Confusion Matrix (CM) is a useful tool to asses in a deeper level the performance

of a ML classifier. A CM is square matrix that plot the true labels against the

predicted ones. The main diagonal of the matrix represents the correctly categorized

samples. Everything o↵ of this diagonal are either false negative of false positive

instances. A CM can reveal a biased classifier and/or an unbalanced dataset. A

“very accurate” classifier is not always as good as it seems, and a CM can reveal

this [53]. See Fig. 3.21, where a CF is shown for the performance of a linear SVM

classifier on the UCI wine dataset [83].

3.5.1.2 Accuracy

Accuracy can be viewed as a raw relation between successful and unsuccessfully classi-

fied instances. Nonetheless there is more than meets the eye, Accuracy can be broken

down into precision and recall measures. First, precision can be acknowledged as the

true Positives (TP) related to the number of true and false positives (TP, FP), whilst

recall is the number of true Positives related to the combination of true positives

plus false negatives (FN). Thus, Accuracy can be established as the fraction of all

correctly categorized instances among all samples (see Eqs. 3.17, 3.18 and 3.19) [53].

Precision =
TP

(TP + FP )
(3.17)
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Fig. 3.21. A confusion matrix for the UCI wine dataset.

Recall =
TP

(TP + FN)
(3.18)

Accuracy =
(TN + TP )

(TP + FN + FP + TN)
(3.19)

Moreover, the F1 score is a stronger measure to asses classification problems. It

takes into account equally the precision and recall measure to give a more balanced

measure. It often delivers lower values than the accuracy by itself, but it is considered

a more trusted appraisal. Mathematically the F1 score is actually the harmonic mean

of the precision and recall values [53]. Eq. 3.20 shows how to compute the F1 score.
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F1score = 2 · (Precision ·Recall)

(Precision+Recall)
(3.20)

3.5.2 Regression metrics

To evaluate algorithms in regression problems we need to estimate the distance from

the predicted value to the ground truth. We call this the error. There are several

error measures that serve di↵erent purposes depending on the problem:

3.5.2.1 The error

Several error measures are available depending on the context they are intended

to be used on. For example the Mean Absolute Error (MAE), also known as the

Manhattan norm (`1) is computed using Eq. 3.21. In addition, the Root Mean Square

Error (RMSE) or `2 norm is calculated with Eq. 3.22. To guide the election of the

proper error measure we can consider that, when the norm index value (`i) tends to

be larger, the more it focuses on greater values and disregards smaller ones [69, 53].

MSE =
1

n

nX

i=1

| yi � ŷi | (3.21)

RMSE =

vuut 1

n

nX

i=1

⇣
y � ŷi

⌘2
(3.22)

3.5.3 k fold cross validation

Validating a ML predictor algorithm requires several datasets. Often times the avail-

ability of various datasets is restricted to just a few or the one. To make up for the

lack of data, a technique called cross validation is employed. Several variants of this

method exist, being the k fold cross validation one of the most used and successful

[53]. It consists of dividing the dataset in k partitions, where the k th part is used

as test and the rest as train data. The model is then fit and evaluated k times,

then the mean or median of k accuracy or error values is reported. This technique

communicates a more generalized depiction of the actual prediction model, since it

reduces overfit and compensate for the shortage of datasets with k pseudo datasets
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[53]. More often than not, the instances in a dataset might show some ordering, so

before performing a k fold cross validation some type of shu✏ing must be performed

on the data, in order to make sure that the train and test partitions will have enough

samples of each class for the model to properly learn from. When the dataset is

also unbalanced, a strategy known as stratified shu✏ing will randomly rearrange the

samples, but making sure that the same proportion of each class appears in both the

train and test partitions [69]. The most frequently used k values to partition the

dataset are 3, 4, 5 and 10. Fig. 3.22 shows a 5 fold cross validation partition of a

dataset.

Fig. 3.22. A 5-fold cross validation example.

Figs. 3.6, 3.7, 3.8, 3.10, 3.11, 3.21 were inspired by graphics appearing in the book “Hands-on

Machine Learning with Scikit-Learn, Keras & TensorFlow” by Géron, A. [69]. Figs. 3.18, 3.19, 3.20
were inspired by graphics in the book “Machine Learning An Algorithmic Perspective” by Marsland,
Stephen [65]. The design of Fig 3.14 was taken from the transformer architecture presented in the
paper “Attention is all you need” by Vaswani et al. in [68]



Chapter 4

A novel evolutionary-based term

weighting-scheme for document

embeddings

4.1 Motivation

Experts in areas such as machine learning, computational linguistics and even psy-

chology work together frequently to solve the AP problem. In this study the purpose

is to propose a novel and e↵ective methodology that contributes to the State of the

Art (SoA) in this field. As previously stated, the PAN scientific event organizes an

annually shared task on Author Profiling since 2013. One main motivation to perform

the study presented in this chapter, relied in the fact that the test partitions of the

PAN datasets (2013-2018) were made publicly available circa late 2018. Up until that

moment only the train partitions were available, which allowed studies to be carried

out with a k -fold cross validation approach. In this regard, the comparison between

the results achieved by the current work and the o�cial results was made under equal

circumstances.

In this study, the proposed method aims to produce Document Embeddings (DE)

by means of evolving mathematical equations that integrate classical term frequency

statistics. To accomplish this, a Genetic Programming (GP) strategy was employed

to build competitive formulae to weight custom Word Embeddings (WEs), produced

by cutting edge feature extraction techniques (e.g., word2vec, fastText, BERT). The

59
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rationale behind this novel methodology relies in producing DEs by averaging theWEs

of the terms of a document with a tailor-made strategy. The aggregation techniques

often employed in literature vary from being as straightforward as a simple mean of

WEs, to the use of common frequency statistics (e.g., tf-idf ) as weighting criteria. In

this thesis it is hypothesized that task-specific weighting-schemes can be constructed,

so more useful DEs can be produced for AP tasks. Moreover, the relevant topic value

(rtv) statistic expressly devised for this study can capture latent information from the

corpus. This statistic was able to encode thematic and word-usage information from

texts, which enhances the weight of WEs associated with a specific target. Moreover,

the rtv was selected by the GP algorithm as a useful variable more often than not,

hence it can be suspected its outstanding usefulness.

4.2 Related Work

As mentioned early in Section 2.5, every year at the PAN event since 2013 new

AP tasks and datasets are used, posing new obstacles. Take for instance the PAN

2015 competition, in this year the goal was to predict gender, age and 5 personality

traits. Frequently the AP endeavour is posed as a classification task, nonetheless to

predict personality (amount of trait present in each individual) most teams used a

regression approach [16]. Furthermore, in the PAN 2016 event the AP task targeted

the detection of gender and age in the English, Spanish and Dutch languages. The

corpus was comprised of Twitter posts as the train partition, whilst blogs and other

social media data for test, thus a cross-genre strategy aimed to produce models that

could generalize better to unseen data [91]. In addition, in the 2017 shared AP task

the objective was to classify gender and language variety for the English, Spanish,

Arabic and Portuguese languages. For this competition, the dataset was composed

with Twitter posts. The varieties used for each language were: Australia, Canada,

Great Britain, Ireland, New Zealand and the United States for English. For the Arabic

language, Egypt, Gulf, Levantine andMaghrebi subtypes were used. The Spanish part

of the dataset was formed by Argentina, Chile, Colombia, Mexico, Peru, Spain and

Venezuela strains. Moreover the regions used for the Portuguese language were Brazil

and Portugal [92]. Finally in 2018 the AP task consisted only in the prediction of

gender. The variant this year consisted in the choice to use images as well as textual
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corpora as features [15].

Frequently the top performer strategies in these shared tasks belong to the fam-

ily of “traditional” Machine Learning (ML) algorithms. Take for instance the 2015

edition. For feature extraction some teams focused on the stylistic and thematic prop-

erties of the dataset, they chose Second Order Attributes (SOA) and Latent Semantic

Analysis (LSA) to enhance the discerning skills of their algorithms [16, 93, 94]. Like-

wise, in 2016 the participants employed a mixture of stylistic features like n-grams

and Part of Speech (POS) tagging [95]. Other competitors used second order repre-

sentations, previously introduced in the original 2013 competition [96, 97]. It is also

noteworthy the frequent use of Bag of Words (BoW), tf-idf weighted n-grams and as

of lately WEs strategies [98, 99, 100]. Furthermore, in 2017 the best performer utilized

a very straightforward method, consisting of a linear SVM with word unigrams and 3

& 5 character n-grams as features [46]. In addition, in 2018 the best performer using

only textual features also implemented a very uncomplicated approach, consisting of

a dimensionality reduction stage using LSA, word and character n-grams as features

and a SVM as predictor [47].

4.3 Methodology

The objective in this chapter was to propose a novel technique for composing DEs and

evaluate their suitability for di↵erent AP tasks. The DEs devised are to be processed

by either a classifier or a regressor, producing a profile of the individuals by gender,

age, and personality traits. Fig. 4.1 depicts the full proposal.

The methodology can be summarized in the following steps:

• Generate WEs for the datasets using the following feature extraction methods:

word2vec algorithm (Skip-gram) [8], fastText [85] and BERT [64]. See item 1A

in Fig. 4.1.

• Compute statistics for terms in each dataset vocabulary, (e.g., tf, tf-idf, IG and

rtv). See item 1B in Fig. 4.1.

• Evolve mathematical equations through GP, using the values obtained in the

last step as terminal variables, to compute the weights of the WEs. See item 2

in Fig. 4.1.
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Fig. 4.1. Architecture of the proposed approach: Document embeddings through a heuristic search

• Create DEs to represent user’s documents by aggregating the WEs of their

posts, using a weighted average with values computed in last step. See item 3

in Fig. 4.1.

• Predict gender, age, personality traits and language variety of users, using their

DEs as features, with Machine Learning (ML) algorithms. See items 4 and 5 in

Fig. 4.1.

All these steps are explained in more detail in the next sections.

4.3.1 Word Embeddings

Two approaches were employed to generate WEs. The first one is based on producing

non-contextual distributed representations of words. For instance, the “apple” word is

represented by only one vector, no matter its contextual meaning. Examples of this

approach are Global Vectors (GloVe) [84], fastText [85] and word2vec (Skip-gram)

[8]. The second approach produces contextual WEs, by using either a Bidirectional

LSTM or a Transformer, which are trained using the context of words (left to right
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and vice versa). Since this is a DNN-based method, several strategies to combine

the hidden layers must be examined, in order to select the one(s) with the most

embedded knowledge. The BERT Language Model (LM) was employed for building

contextual WEs, which are presumed to be superior than traditional word vectors

when addressing polisemy. To extract the word vectors from the 12 hidden layers of

BERT, the last four tiers were added, as suggested by the authors, since it is in those

last layers were most of the contextual knowledge can be found [64].

A vocabulary of WEs was devised for each dataset. The only pre-processing done

to the collections was tokenization and lower casing of the terms. No stop words were

eliminated since they are believed to be useful in AP tasks. For non-contextual WEs

three options were examined. GloVe vectors (o↵ered as pre-trained data), although

very e↵ective in several documented problems, did not deliver optimal results for

these particular tasks. Within Python Gensim library [101], word2vec and fastText

algorithms were used for constructing non-contextual custom WEs (created from

each dataset). Several configurations of parameters were explored, specifically the

size (dimensions) and window (number of neighboring words). Table 4.1 shows the

hyper-parameter settings examined. As the reader can see, small and large window

values were considered (e.g., 5, 40 ). Furthermore, the best WE models were attained

with window values of 30 and 40. Hence, it can be theorized that a large window is

better suited for semantic, rather than lexical applications [8].

Table 4.1: Parameters examined for the word2vec (Skip-gram) and fastText algorithms

Word vector Alg. Parameter Value

word2vec (Skip-gram), fastText ‘size’ 50, 100, 300 500
‘window’ 5, 10, 15, 30, 40

BERT was employed as a feature extraction method, using the Transformers li-

brary from Hugging Face [87]. The pre-trained BERT-Base (English and Multilingual

models) allowed to encode 768-dimensional vectors, for the respective languages.

4.3.2 Statistical values to establish importance of terms

To establish the weight of a term within a document, a set of known and custom

defined statistics were computed for each word in the vocabulary (i.e. term-frequency
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(tf ), term-frequency inverse-document-frequencytf-idf, information gainIG and rtv).

For this purpose, four di↵erent dictionaries of terms and their statistics were built

using Eq. (4.1).

Dict ✓ { (t, v) | f : T ! V } (4.1)

Where T is the set of terms that compose the vocabulary and V is a descending

sorted list of values, associated with the relevance of each term in the set of documents

of a given user. Table 4.2 display the four statistics used to construct the dictionaries

of terms1.

Table 4.2: Variables (terminals) used in the GP process to evolve weight equations

Dictionary f : T ! V

Dict-x1 tf(wn) = f(wn)

Dict-x2 tf-idf(wn) = (1 + log tf(wn)) · log N

df

Dict-x3 IG(wn) =
P

n,y
P (wn, y) ln

P (wn,y)
P (wn)P (y)

Dict-x4 rtv(wn) = T [i][wn] + log( N

1+ldf) + 1

Next, the term statistics contained in the four dictionaries are described:

• Dict-x1.- The frequency (occurrence) of each term within the documents (posts,

tweets, etc,) of each user, where f(wn) is the raw count of a word (wn) in a

document. The more often a term appears, its value will be greater in the

dictionary.

• Dict-x2.- The tf-idf value, which increases according to the importance of the

term across the dataset, where N is the total number of documents in the

dataset and df is the number of documents containing the term. A term will

have a greater value if it appears often in a few documents, whilst if a term

appears often in many documents, its value will be o↵set, decreasing its amount.

1Dictionaries are noted as Dict-xn, however when describing the value extracted from it, xn(wm)
or just xn are used sometimes in favor of a clearer representation on a Table or Figure.
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• Dict-x3.- Establish the mutual information (dependence) between wn

(terms from a tf-idf sparse matrix) and y (the target class), where P (wn, y) is the

probability of wn given y, P (wn) is the probability of the vector of features and

P (y) the probability of the target. Terms that have a higher joint probability

with its target, tend to score greater in the dictionary.

• Dict-x4.- The rtv determines the importance of a term from the standpoint of

content topic and personal usage of words. The matrix T [i][wn] represents the

importance of a term within a topic, and it is produced by the Non-negative

Matrix Factorization (NMF) method: T ⇡ F

H
, where F is a tf-idf sparse matrix

of terms and H is a coe�cient matrix. The NMF algorithm is used to extract

latent topics from the corpora. Therefore, i represent the most likely topic a

document belongs to, and wn is the term in a document. Finally, log( N

1+ldf)+1 is

a personal smooth local idf o↵set, devised to numerically describe the personal

usage of words, where N is the total number of documents of a given user, and

ldf is the number of documents (posts) where the term appears. Terms that

are more associated with their topic will have a greater value in the dictionary,

o↵set by how users employ that word.

The tf, tf-idf statistics are often used in NLP tasks such as textual similarity or

theme segmentation, whilst IG is mostly employed as a feature selection technique.

In this work the dictionary of statistics Dict-x4 was expressly devised for the AP task

(rtv).

4.3.3 Term weighting equations evolved via Genetic Pro-

gramming

Once the four dictionaries of importance values are assembled into a Statistical

Dataset (SD), the GP algorithm evolves weighting-scheme equations. GP uses a

symbolic regression approach to approximate a specific target. It constructs mathe-

matical equations in the form of syntactic trees, employing crossover and mutation

operators, to produce an initial population of random trees (equations), using values

from the SD (previously built dictionaries) along with constants, as terminal nodes.

Finally, a set of math operators are employed to mix the terminals into equations.
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Fig. 4.2 depicts two examples of evolved equations, that were actually used in their

corresponding datasets to compute the weight of terms.

Fig. 4.2. GP generated equations. a) PAN-2018 Gender (Spa.) & b) PAN-2014 Gender Soc. Med.
(Spa.)

The targets to approximate are the classes to be predicted in each dataset, pre-

viously converted into a tgt value where tgt 2 R = {x 2 R | x � 0}. In each passing

generation, the most qualified (determined by a fitness function) individuals (equa-

tions) are passed to the next generation to participate in a new round of crossover and

mutation operations, to produce a new population. New equations are generated by

minimizing the fitness objective function Mean Absolute Error (MAE). These steps

are repeated until an error threshold value, or a specific number of generations are

reached. Finally, the best individuals in the last population are examined to select

the one that delivers the best weighting scheme for WEs. Due to GP being a non-

deterministic algorithm, a k -fold cross validation of the SD was conducted, exploring

k the values of 3, 5, 7 and 10. Then, this strategy was executed at least 10 times in

each dataset/task combination, to produce the best weighting schemes. Even though

the algorithm was executed several times, a set of equations commonly made repeated

appearances regardless of the fold or execution iteration. More often than not, the
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best equation belonged to the frequently appearing set of formulas. Moreover, there

is very little di↵erence in accuracy among all the final selected weighting schemes

(formulas). Thus it can be theorized all of them are equally e↵ective. For the GP im-

plementation the GPLearn library [90] was employed. Table 4.3 shows the parameters

used by GP. Algo. 2 depicts the whole GP stage.

Table 4.3: Hyperparameters of the GP Process

Parameter Value

‘Population size’ 1000
‘Generations’ 100
‘Function set’ ‘add’, ‘sub’, ‘mul’, ‘div’,

‘sqrt’, ‘log’, ‘sin’, ‘cos’,
‘tan’, ‘neg’, ‘max’, ‘min’, ‘abs’

‘Metric’ MAE
‘Tournament size’ 20
‘Constant range’ -10, 10
‘Tree depths range’ 2-6
‘Init. method’ ramped half and half
‘Crossover prob.’ 0.9
‘Mutation prob.’ 0.1

The resulting evolved equations can be as short as two or three math operators

and as many number of variables, but can also be very large, involving many oper-

ators and repeating many terminals. This phenomenon is known in GP as bloating.

Although most of the attained equations are small, a few ones turned up rather large.

Nonetheless, these broad equations did not a↵ect the computational performance of

the whole approach. The Eq. (4.2) is an example of a weighting-scheme for composing

DEs, for predicting gender in the Spanish language for the PAN 2018 dataset (as seen

in Fig. 4.2 item a)).

GPWeight(wn) = sqrt(sub(Dict-x1(wn), cos(Dict-x4(wn)))) (4.2)

Where GPWeight(wn) is the term weight used to aggregate the WE of the n-

term into a DE. (wn) is the n-term in a document. Dict-x1(wn) is the tf value of the

n-term, and Dict-x4(wn) is the rtv score for the n-term.
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Algorithm 2: A K -fold execution of the GP process, to produce the most
competitive formulae.

for i = 1 to K � folds do
for i = 1 to NumOfGenerations (or until an acceptable solution is found) do

if 1st generation then
Generate the initial population with primitives (terminals, constants
and math operations) with ramped 1

2 and 1
2 method;

else
With current population generate a new one using crossover and
mutation operators;

end
Calculate fitness (minimize mae) of population members;
Select n members from population (tournament parameters) to participate
in genetic operations according to specified probabilities;

Create individuals (equations) from genetic operations according to
specified probabilities;

end
Return best individual in last population

end
Result: Return K equations to find the best term weighting-scheme

4.3.4 Producing Document Embeddings via a weighted-average

As mentioned before, the methodology consists in producing DEs by aggregating

single WEs into vectors of the same dimensionality. The DEs are computed using

Eq. (4.3), whilst the two baselines used to compare against to are calculated with

Eqs. (4.4) and (4.5).

DEs-GPE-WS(ui) =

P
j

n=1

�
GPWeight(wn) ⇤WE(wn)

�
P

j

n=1 GPWeight(wn)
(4.3)

DEs-BL1(ui) =

P
j

n=1

�
tf-idf(wn) ⇤WE(wn)

�
P

j

n=1 tf-idf(wn)
(4.4)

DEs-BL2(ui) =

P
j

n=1

�
WE(wn)

�

n
(4.5)

Where DEs-GPE-WS(ui) is the DE, representing the posts of the i-user in the

dataset, produced by a Genetic Programming Evolved-Weighting Scheme (i.e., for-

mulas, equations) (GPE-WS), as it will be called for the rest of the chapter. DEs-
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BL1(ui) is the DE generated by using tf-idf as weighting-strategy. DEs-BL2(ui) is a

DE composed by a simple mean of WEs, j is the number of terms in documents of

i-user, wn is the n-term in the i-user’s documents (posts). WE(wn) is the word em-

bedding (vector) of the n-term in the documents. tf-idf(wn) is the tf-idf value of the

n-term, that can be retrieved from Dict-x2. The reader must take special attention

in GPWeight(wn) of Eq. (4.3), this value is obtained by using the GPE-WS for each

dataset ! target combination, as exemplified in Eq. (4.2).

4.4 Experimental Setup

Once the DEs are produced via a GPE-WS of WEs of documents, these are fed to four

di↵erent ML algorithms to predict the gender, age, personality traits and language

variety of users. Classifier and Regressor implementations of Support Vector Machine

(SVM), Random Forest (RF), Extra Trees2 (ET) and K-Nearest Neighbors (KNN)

were used from the Python Scikit-learn library [82]. These ML algorithms were

tested for evaluating the behavior of the proposed approach when used by several ML

methods. Two rounds of experiments were conducted with these algorithms. First, a

fixed set of hyper-parameters were used in all datasets/tasks to test the generalization

of the approach. The results attained were competitive. Then, in a second round of

experiments a hyper-parameter grid search for each collection in the train set was

conducted, which obtained even better results. In section 4.5, the outcome achieved

with the hyper-parameter tuned models is presented. The results from the first round

of experiments are only included in Fig. 4.11, to show how both sets of experiments

are competitive, thus it can be presumed the methodology is robust.

4.4.1 Datasets

The main purpose of this study was to devise and evaluate a representation of doc-

uments that could be practical in the AP problem. For this work several datasets

crafted expressly for AP tasks were utilized. These collections were designed by the

organizers of the PAN event at CLEF for every shared task since 2013. Most of the

information of users are collected from social media outlets, blogs, Twitter and hotel

2Extremely Randomized Trees. Split nodes using a random split rather than a best split strategy
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reviews. The aim is to predict the gender, age, personality traits and even language

variety of each user in a test partition. All of these classes were approached as a classi-

fication problem, except personality traits. De to its nature this problem was posed as

a regression task. Table 4.4 illustrates a summary of these datasets. For a more com-

prehensive explanation about these tasks and datasets refer to [32, 102, 16, 91, 92, 15].

These collections have been used in several studies in the AP problem, where a

k -fold cross validation approach was used most of the times, because only the train

partitions were available. Since the test partitions of these datasets were made public

just recently, a competition strategy (separate train and test sets) could be done

to compare the performance of the proposed architecture against the o�cial results.

Figs. 4.3 through 4.8 show the length in tokens (words), of train and test partitions

in the 2013-2018 PAN datasets. Next, a brief description is given for each collection.

The main source of information for the 2013 dataset comes from outlets of blog

posts such as Netlog, which were labeled with information about the author like

gender and age. As can be seen in Fig. 4.3, most of the train and test samples are

very short (composed of a few tokens), whilst a minority of them are large (more than

10,000 tokens).

Fig. 4.3. train and test samples for the 2013 dataset.

In the 2014 AP task, the dataset was divided into four di↵erent sub-datasets (social

media, blogs, Twitter, and hotel reviews). The purpose behind this idea was to observe

the behavior of models across di↵erent types of information sources. For the social

media option the data came from a subset of the previous year dataset (PAN 2013).
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Table 4.4: Amount of samples in each dataset. Also, the average length of train and test documents
is included. The length of a document is measured in number of tokens considered to build the DEs.
The standard deviation is included for reference.

Documents Train length stats Test length stats

Dataset Lang. Classes train test total Avg. � Avg. �

2018 ENa Gb=2 3000 1900 4900 1597.24 287.60 1595.17 280.83
SPc 3000 2200 5200 1532.18 329.87 1540.45 334.10
ARd 1500 1000 2500 1399.93 454.06 1399.15 455.77

2017 EN G=2, Ve=6 3600 2400 6000 1592.89 293.15 1589.65 289.63
SP G=2, V=7 4200 2800 7000 1517.35 336.46 1528.60 342.18
AR G=2, V=4 2400 1600 4000 1439.25 440.95 1432.35 450.95
PTf G=2, V=2 1200 800 2000 1217.70 321.44 1219.01 302.62

2016 EN G=2, Ag=5 436 78 514 9139.99 6571.51 4295.04 5935.62
SP G=2, A=5 250 56 306 12558.47 6630.72 3883.75 8725.68

DUh G=2 384 500 884 2651.71 1217.71 153.97 74.31

2015 EN G=2, A=4, Pi=5 152 142 294 1324.14 411.28 1312.45 429.15
SP G=2, A=4, P=5 100 88 188 1613.36 311.27 1610.26 349.50
DU G=2, P=5 34 32 66 1428.12 361.32 1257.28 339.21
ITj G=2, P=5 38 36 74 1481.16 278.00 1420.56 277.48

2014 SMk EN G=2, A=5 7746 3376 11122 10560.81 5305.88 13561.03 5560.58
SP G=2, A=5 1272 566 1838 6392.58 6488.43 9708.52 8652.81

2014 Bl EN G=2, A=5 147 78 225 4437.62 7131.94 4295.04 5935.62
SP G=2, A=5 88 56 144 8238.98 11982.67 3883.75 8725.68

2014 Tm EN G=2, A=5 306 154 460 9028.76 6960.88 9253.54 6271.77
SP G=2, A=5 178 90 268 13124.87 7250.98 12025.30 6347.86

2014 Rn EN G=2, A=5 4160 1642 5802 271.04 350.97 249.65 303.49

2013 EN G=2, A=3 236600 25439 262039 843.82 678.59 584.92 739.06
SP G=2, A=3 75900 8160 84060 300.01 614.81 265.45 533.65

aEnglish
bGender
cSpanish
dArabic
eVariety
fPortuguese
gAge
hDutch
iPersonality
jItalian
kSocial Media
lBlogs

mTwitter
nReviews

In the case of the blogs and Twitter subsets the information was manually selected

and annotated by the organizers. Finally, the hotel reviews subset was derived from

the Tripadvisor website. As the reader can observe in Fig. 4.4, the social media
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follows a pattern similar to the 2013 dataset, since it was taken from it. Also the

hotel reviews dataset presents a similar design, whilst the blogs and Twitter subsets

are more balanced with respect to the number of samples.

Fig. 4.4. train and test samples for the 2014 dataset.

The 2015 PAN dataset was formed by user posts from the Twitter platform. The

samples were manually annotated with age and personality scores. The personality

was self assessed by the users using an online test. Fig. 4.5 shows the outline of this

dataset. Even though the number of samples is considerably smaller than previous

years, the length of the posts is more balanced.

The 2016 AP task intended a cross-genre evaluation, that is, the train and test

partitions came from di↵erent sources. For the train portion the information was

obtained from Twitter posts, while for the test partition the samples were taken

from blogs. Fig. 4.6 shows moderately balanced datasets for the English and Span-

ish languages, whilst for the Dutch idiom, we can observe that the test segment is

considerably larger than the train set, which is atypical.

The 2017 and 2018 datasets were also comprised form Twitter posts. In the 2017

edition the task consisted of the prediction of gender and language variety (di↵erent

regional variants of English, Spanish, Arabic and Portuguese). In 2018 only the

gender was the forecasted target. Figs. 4.7 and 4.8 shows the datasets for these years

are more balanced with respect to the length of the posts.
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Fig. 4.5. train and test samples for the 2015 dataset.

Fig. 4.6. train and test samples for the 2016 dataset.
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Fig. 4.7. train and test samples for the 2017 dataset.

Fig. 4.8. train and test samples for the 2018 dataset.
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4.5 Results

This section is organized in two main sets of experiments. In the first experiment the

performance of the GPE-WS approach was evaluated with regard to two well known

baseline strategies and the proposed statistic value: a) a tf-idf weighted-average, b)

a WE regular average and c) a rtv weighted-average. The aim of this experiment is

to contrast the performance of this proposal against other common methodologies to

generate DEs. For the second experiment, the proposed methodology was compared

against the winning teams from years 2013-2018 in the AP shared tasks at PAN.

4.5.1 GPE-WS vs Baselines

Table 4.5 shows gender prediction, as measured by Accuracy and F-1 score, through

all PAN competitions for the GPE-WS approach and the baselines. The reader can

observe that the GPE-WS consistently outperforms the baselines, even in some years

with an important di↵erence in performance (take for instance year 2015). Only

in 2013 the baseline 1 (tf-idf average) surpassed GPE-WS, and barely by a narrow

margin. This can be partially explained due to the short nature of the posts in this

dataset, which could cause limited topic understanding weighting schemes.

Table 4.5: Gender prediction accuracy by year at PAN (the shown results are the average of all
languages in each dataset).

GPE-WS Baseline 1 Baseline 2 rtv

Dataset Acc. F-1. Acc. F-1. Acc. F-1. Acc. F-1.

2013 0.6209 0.6181 0.6213 0.6191 0.6187 0.6161 0.6095 0.6074
2014-SM 0.6084 0.6076 0.5844 0.5836 0.5360 0.4507 0.5875 0.5836
2014-BL 0.7214 0.7146 0.6369 0.6247 0.5000 0.3333 0.6229 0.6002
2014-TW 0.7804 0.7801 0.6433 0.6426 0.6494 0.5655 0.6674 0.6673
2014-RW 0.6827 0.6826 0.6797 0.6796 0.6815 0.6814 0.6711 0.6711
2015 0.9100 0.9099 0.7957 0.7870 0.8368 0.8343 0.8115 0.8021
2016 0.6882 0.6853 0.6264 0.6203 0.6204 0.5968 0.6477 0.6388
2017 0.8087 0.8086 0.7774 0.7771 0.7906 0.7905 0.7895 0.7894
2018 0.8047 0.8046 0.7835 0.7834 0.7925 0.7924 0.7911 0.7910

Table 4.6 presents the comparison of the same strategies for predicting age in

seven di↵erent datasets. Still, each year, GPE-WS o↵ers very competitive results,

then suggesting it can be a strong approach to generate DEs for two common AP

variable predictions.
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Table 4.6: Age prediction accuracy by year at PAN (the shown results are the average of all
languages in each dataset).

GPE-WS Baseline 1 Baseline 2 rtv

Dataset Acc. F-1. Acc. F-1. Acc. F-1. Acc. F-1.

2013 0.6662 0.4515 0.6629 0.4475 0.6627 0.4490 0.6546 0.4416
2014-SM 0.4358 0.3291 0.3890 0.2786 0.3104 0.1799 0.3862 0.2806
2014-BL 0.5549 0.2630 0.3265 0.1679 0.3860 0.1105 0.3315 0.1638
2014-TW 0.5556 0.3212 0.5227 0.3010 0.5088 0.2102 0.4953 0.2933
2014-RW 0.3167 0.1828 0.3143 0.1828 0.3149 0.1820 0.3124 0.1799
2015 0.8343 0.7613 0.7686 0.6660 0.6717 0.5863 0.7466 0.6771
2016 0.5614 0.3235 0.4208 0.1855 0.4780 0.2460 0.4425 0.1987

Besides gender and age, in 2015 also personality traits were predicted. The targets

for personality are Openness (to experience), Conscientiousness, Extroversion, Agree-

ableness and Neuroticism/Stableness, as proposed by the Five Factor Model (FFM) of

personality [103]. As mentioned before, this problem was posed as a regression task.

The values to estimate vary between certain ranges to predict the amount of such

trait present in a specimen. In this case the evaluation measure used was the Root

Mean Square Error (RMSE), as shown in Eq. (4.6). Fig. 4.9 shows the comparison

between the GPE-WS against baselines in terms of RMSE. As the lector can observe,

GPE-WS also achieves top performance when predicting all single personality traits

against common baselines. Also note that rtv by itself obtains comparable results

with regard to the other two baselines.

RMSE =

vuut⌃n

i=1

⇣
predictedi � targeti

⌘2

n
(4.6)
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Fig. 4.9. Personality prediction (RMSE) at PAN 2015 (the shown results are the average of all
languages in each personality trait).

(lower is better)

For the 2017 shared task, another AP variable was involved, language diversity.

Here, the goal was to predict regional variants of the English, Spanish, Arabic and

Portuguese languages. Fig. 4.10 shows the comparison of the GPE-WS against same

baselines for this specific task. We can still observe that even for granular sub-tasks

the results reported for the proposed approach are very consistent.
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Fig. 4.10. Language diversity prediction (Accuracy) at PAN 2017.
(higher is better)

4.5.2 GPE-WS vs PAN 2013-2018 Competitors

Table 4.7 presents a direct comparison between the accuracy results obtained by the

GP approach against the best performer (winner) at each year competition at PAN.

It is important to notice the variety of dataset-specific feature engineering strategies

among the top participants, yet the intended approach scores in the top-quartile along

with the first places. Moreover, in Fig. 4.11 we can appreciate the entire perspective.

As can be seen, the strategy submitted in this study shows a consistent performance

among the top achievers in every event.
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Table 4.7: Accuracy of GPE-WS vs. best competitor at PAN shared tasks (2013-2018). The shown
results are the average of all languages for each dataset/task

Dataset GPE-WS Best @PAN

2013-G 0.6213 0.5995
2013-A 0.6662 0.6565
2014-SM-G 0.6084 0.5834
2014-SM-A 0.4358 0.4038
2014-BL-G 0.7214 0.6344
2014-BL-A 0.5549 0.4398
2014-TW-G 0.7804 0.6604
2014-TW-A 0.5556 0.5134
2014-RW-G 0.6827 0.6809
2014-RW-A 0.3167 0.3337
2015-G 0.9100 0.8712
2015-A 0.8343 0.8168
2015-Extroa 0.1111 0.1018
2015-Stablea 0.1444 0.1581
2015-Agree.a 0.1051 0.0736
2015-Consc.a 0.0995 0.1151
2015-Opena 0.0945 0.0946
2016-G 0.6882 0.6184
2016-A 0.5614 0.5538
2017-G 0.8087 0.8253
2017-V 0.9071 0.9184
2018-G 0.8047 0.8170

a Lower is better.

As mentioned before, four di↵erent algorithms were used to predict characteristics

from authors, using their DEs as features. Fig. 4.12 describes the achievement of

each classifier predicting gender and age (averaged in all languages). The reader can

observe that SVM, RF and ET attained the best results, 37.5%, 37.5% and 25% of

the times, respectively. As can be noted, the di↵erence in performance between them

is little; therefore it can be presumed certain robustness of the methodology.
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Fig. 4.11. Boxplots depicting the performance of GPE-WS vs all competitors at PAN (2013-2018).
A black filled circle represents GPE-WS results with hyper-parameter search, and a blank circle
depicts GPE-WS with a fixed hyper-parameter set for WE models and classifiers. The shown
results are the average of all languages for each dataset/task. Diamonds portrait the outliers.

4.5.3 rtv : A New Term Weight for Author Profiling

The rtv statistic devised for this work, was an important contributor in the GPE-WS,

due to its capability to enhance importance of terms across the built DEs. Take for

instance Table 4.8, which shows the frequency of the variables (terminals) more often

employed by GP to construct the best equations. Similarly, Table 4.9 shows an even

more revealing picture, the feature most likely to appear alone in a single equation is

x4(wn), which happens to be the rtv that was specifically developed in this study for

AP tasks. In addition, the combination of features more often appearing are {x2�x3},
{x2 � x3 � x4} and {x2 � x4}, thus suggesting that a blend of these variables also
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Fig. 4.12. Classifier’s accuracy performance, using GPE-WS DEs in Gender & Age (average in all
languages) prediction by year at PAN. (2017 is the average of Gender & and Language variety

predictions, and 2018 gender only).

delivers e↵ective results. Thematic information is crucial for AP tasks [104]. This

might be one possible explanation for the success of the rtv, since this statistic was

devised to enhance the weight of terms more associated with the prevalent theme in

a user’s document. Also, this metric was also rewarded in proportion with rarity of

words, established by an inverse document frequency (idf) value computed for each

user’s document, to measure the usage of words by each person, thus providing an

additional discerning boost to the rtv.

Table 4.8: Frequency of the terminal set in the GPE-WS

Terminal Appearances %

x1(wn) 1 0.47
x2(wn) 108 50.23
x3(wn) 47 21.86
x4(wn) 59 27.44
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Table 4.9: Frequency of terminal combinations in the GPE-WS

Terminal combination Appearances %

x1 � x2 1 1.67
x2 3 5.00
x2 � x3 11 18.33
x2 � x3 � x4 6 10.00
x2 � x4 5 8.33
x3 2 3.33
x3 � x4 1 1.67
x4 31 51.67

4.5.4 Performance and size of datasets

Performance of ML algorithms and size of datasets are intimately related. While the

amount of samples has been proved to be very important, the size of each instance

must be examined too, specially in complex NLP tasks such as AP. In the present

study, it was explored whether there was a correlation between performance and

the length of the documents (measured in the number of tokens used to produce

DEs). The analysis indicates that no clear correlation exists between accuracy and

average size of documents in train and test sets. This finding is compatible with

previous works, where the size of textual samples did not a↵ect considerably the

overall e�ciency, as long as the number of samples were numerous [16, 38]. Fig. 4.13

shows no discernible correlation exists between document size and accuracy, in either

train and test partitions, for gender and age predictions.

4.5.5 Contextual vs Non-Contextual Word Embeddings

As previously stated, the feature extraction phase was addressed with two types of

WE techniques. For the non-contextual WEs, word2Vec and fastText algorithms

were examined. From the values investigated for both approaches (see Table 4.1),

dimension sizes of 300 and 500, as well as window sizes of 30 and 40, delivered

the best results. Although there is no clear pattern to determine in which type of

datasets each performs better, it is suspected fastText models might have succeeded in

datasets with substantial out-of-vocabulary words, since this algorithm is trained with

character level information. In both cases, they performed the best most of the times
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Fig. 4.13. Graphics showing no evident correlation between Accuracy and Document Size, in
train and test partitions, for gender and age.

in non-English datasets. Furthermore, a value greater than 500 normally increased

the computational time required for training, with no useful gain in accuracy, whilst

a dimension lesser than 300 saw a clear decline in performance. Likewise it can be

hypothesized a large window (as opposed to small ones like 5) suits better for semantic

tasks such as AP.

In the case of contextual WEs, BERT was used as a feature extraction method

to compose word vectors. The theoretical benefits of such approach have already

been discussed. In English datasets BERT achieved the best results more times than
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any other model. This can partially be explained since the BERT pre-trained model

for this language was prepared with the BooksCorpus [105] and the whole English

Wikipedia, while the multi-language pre-trained BERT was processed with the not-

as-vast Wikipedia corresponding languages. Even though BERT was not trained on

a social media corpus, it is worth noting that in some cases, when BERT performed

better than word2vec and fastText models for English datasets/tasks, it did so with

a clearer margin. Thus, it can be presumed that an English or Multilingual BERT

model, trained over larger datasets from more diverse contexts (e.g., social media,

medical corpus, product reviews), could potentially outperform contextual WEs in

AP related problems. See Table 4.10 for a complete reference of each model used to

produce WEs in the dataset/task/language combination where it performed the best.
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Table 4.10: Best WE models used in each dataset/task/language combination

Word Embedding Model % of Dataset Task-Lang.
(Mod.-Dim.-Win.)a Da/Ta/Ln.b

BERT-768- 16.67% 2014-SMc Gd-EN, Ae-EN,
2014-TWf G-EN, A-EN,
2014-RWg G-EN, A-EN
2015 G-EN, CONSh-EN
2017 G-EN
2018 G-EN

fastText-300-30 10% 2014-SM G-SP
2014-BLi G-SP, A-EN
2015 EXTRj-EN, STBLk-DU
2017 Vl-PT

fastText-300-40 6.67% 2015 AGREm-DU, CONS-IT
2016 A-SP
2017 G-AR

fastText-500-30 6.67% 2015 A-SP, AGRE-EN,
2017 G-SP
2018 G-SP

fastText-500-40 11.66% 2015 A-EN, STBL-IT, CONS-DU
2016 G-EN
2017 V-EN, V-SP, V-AR

word2vec-300-30 16.67% 2013 G-EN, G-SP, A-EN, A-SP
2014-BL A-SP
2015 EXTR-IT, AGRE-SP, CONS-SP
2016 G-DU, A-EN

word2vec-300-40 5% 2014-TW G-SP
2015 G-SP
2018 G-AR

word2vec-500-30 13.33% 2014-BL G-EN
2014-TW A-SP
2015 EXTR-SP, STBL-EN, STBL-SP, AGRE-IT,

OPENn-EN
2018 G-SP

word2vec-500-40 13.33% 2014-SM A-SP
2015 G-IT, G-DU, EXTR-DU, OPEN-SP,

OPEN-DU, OPEN-IT
2017 G-PT

aModel name - Dimensions - Window
bPercentage of Dataset/Task/Language combinations solved by each model
cSocial Media
dGender
eAge
fTwitter
gTripadvisor reviews
hConscientiousness personality trait
iBlogs
jExtraversion personality trait
kStableness/Neuroticism personality trait
lLanguage variety

mAgreeableness personality trait
nOpenness personality trait
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4.6 Discussion

We can assume that WEs trained over specific-domain datasets, are useful as building

blocks to construct DEs. In this sense, the methodology presented in this chapter

although straightforward, is arguably a sound strategy to produce text representa-

tions (DEs) for AP tasks. This approach outperformed two baselines, often depicted

in literature as solid references in NLP problems. Also, it proved to be a strong com-

petitor against the top-quartile participants in six international competitions on AP

challenges (PAN shared tasks 2013-2018). Since the test partitions of the datasets in

such competitions have recently been released, this study might be one of the first

that describes an exhaustive comparison between a proposed method and the o�cial

results. Furthermore, from the results attained in this study, it can be concluded that

not all terms have the same influence when constructing a DE, it depends mostly on

the feature to predict (e.g., gender, age) and the domain-specific dataset. Whereas

in some dataset-task combination a rare term is very important, in others a com-

mon word tends to have more value. Hence the importance of open lexicons, which

are derived from the extraction of latent information in dadasets. This might be a

reason why the rtv rewards di↵erently same terms across di↵erent corpus. The dy-

namic nature of language accounts for the oscillating meaning of some words through

time and context, which explains why some terms are AP relevant in some datasets,

whilst in other their quality declines. Moreover, the rtv statistic devised in this study,

demonstrated that the term-theme relation is also very important for the weighting

of WEs.

To the best of my knowledge, an evolutionary approach to compute weighting-

schemes to aggregate WEs into DEs in the AP context has never been attempted. In

this respect, the main contributions of this work can be summarize as follows:

• From the theoretical point of view, the rtv introduced in this study, has shown

potential as a practical statistical feature, considering that the GP procedure

pondered it as the most likely variable to appear alone in a single equation,

then suggesting its usefulness in AP tasks, and potentially in more general NLP

problems.

• The practical implication of this work is that, the proposed approach can be

deemed as a robust methodology, since it attained competitive results in all
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datasets where it was tested, achieving always a top-quartile place against SoA

competitors. Thus suggesting its utility as a feasible solution to predict char-

acteristics from persons behind a social media account.

At the same time, the proposed method present shortcomings that could be ad-

dressed in future investigations. For instance, larger fine-tuned BERT models could

be employed to produce better customized contextual WEs. In addition, the GP

strategy could also be enriched by including even more latent statistics as variables.

In the end, even using better contextual WEs a DE can encode only so much infor-

mation, since the order of the terms in a document is discarded by the aggregation

policy. To tackle this flaw, a neural network approach was devised, which is the theme

of next chapter.

A paper of this chapter was published in the Elsevier Information Processing &

Management Journal. Indexed by the Journal Citation Reports (Clarivate Analytics,

2019), Impact Factor: 3.892. [86].



Chapter 5

A Wide & Deep Attentive Network

for Author Profiling: The Profiler

5.1 Motivation

As discussed in last chapter, the Author Profiling (AP) problem remains unsolved and

new approaches are constantly being evaluated. In the Natural Language Processing

(NLP) field the State of the Art (SoA) is frequently updated with novel techniques.

Take for instance the case of Recurrent Neural Networks (RNN). Up until just a

couple of years, this type of deep neural architectures were the SoA for addressing

NLP related problems. However in the last few years this networks have steadily been

displaced by new architectures, namely the transformer. So it has become customary

to try this new approach in areas where it has not been tested before. Nonetheless,

there must be a clear idea and justification behind the attempt to use it in di↵erent

contexts. The transformer has been already evaluated with extraordinary results in

several tasks such as translation, question answering and automatic text generation.

As of now, it has not been assessed in AP tasks. The usage of a SoA methodology

where it has never been tried before constitutes innovation. However, the proposal

of a novel technique with scientific foundations require a more original approach.

Employing the transformer as groundwork it is hypothesized that a new and expressly

AP designed transformer based methodology could deliver competitive and even SoA

achievements.

The main mechanism behind the transformer is the self attention module. This

88
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component provides a careful scrutiny among words in a document (i.e., sentence,

paragraph). This process supplies terms with context, which has been found to be

of great benefit in several NLP tasks. Later in the chapter, we will discover that

paying attention to words in documents might not be enough for AP tasks. So

a new architecture is envisioned that takes advantage of the attentive transformer,

whilst simultaneously learns AP specifically designed features. Literature suggests

that “personal”and “thematic” information is useful in the profiling of authors. Then

it is theorized that a jointly e↵ort that pays attention to context of terms and also

grasps “personal”and “thematic” features would attain positive results.

Moreover, by the end of last chapter the shortcomings of the method there pre-

sented were clearly stated. So another main motivation behind the architecture intro-

duced in this chapter is to address the AP riddle from a DL perspective. As with the

first method, some of the datasets employed before are used again, particularly those

where Deep Learning (DL) based methods were utilized the most, for comparison

purposes.

5.2 Related Work

Historically, in the Uncovering Plagiarism, Authorship and Social Software Misuse

(PAN) scientific event the winning teams in years 2013 to 2019 have used well known

strategies that could be considered “traditional”, such as Bag of Words (BoW), Sec-

ond Order Attributes (SOA), Latent Semantic Analysis (LSA) and tf-idf weighted

character and word n-grams [42, 43, 44, 45, 46, 47, 48]. However In recent years DL

approaches have proved their quality in NLP endeavours, this is why the amount

of works using DL strategies has recently increased in NLP shared tasks. Take for

instance the work of González et al. in [75]. Their research attempted the prediction

of irony in Twitter posts using a transformer based architecture (similar to BERT

[64]) to contextualize in-domain word2vec embeddings. What is interesting of their

approach, is that they could examine the multi-head attention module of their ar-

chitecture to asses how irony is detected within the text. Their work was tested

at the Irony Detection in Spanish Variants (IroSvA) task at the Iberian Languages

Evaluation Forum IberLEF 2019 and Irony Detection in English Tweets task at the

International Workshop on Semantic Evaluation (SemEval 2018), achieving 1st and
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2nd place respectively.

However, for the PAN AP tasks the results attained by this new wave of tech-

niques are yet to consistently achieve top places. Nonetheless, they have been steadily

gaining ground. The PAN datasets that will be treated in this chapter are those from

the 2017, 2018 and 2019 editions, since it is in these years the quantity of DL methods

has incremented, thus an interesting comparison could be made. To exemplify this

trend, some works done by participants in the 2017 to 2019 editions at PAN are de-

scribed. First we have the work of Franco-Salvador et al. in [106], where the authors

used a Deep Averaging Network (DAN) fed with in-domain trained Word Embed-

dings (WE) using the fastText algorithm [85]. Their e↵ort attained 10th place out of

22 participants. Next we have the approach of Kodiyan et al. in [107], in this case the

authors attempted the profiling of authors by using Bidirectional RNNs, using Gated

Recurrent Unit (GRU) cells and an attention mechanism. Their strategy achieved

12th place at the same competition. Then, there is the work of Miura et al. in [50],

where they addressed AP by the use of a sophisticated DL architecture containing

WEs, RNN and Convolutional Neural Network (CNN) layers and attention mecha-

nisms. This SoA methodology achieved 4th place overall. Even though it did not

obtained a top rated result, it can be seen that showed a competitive performance,

which gives hope for DL approaches to start succeeding at these events. In the work

of Nils Schaetti in [108], the competitor approached the task by enrolling two mod-

els, first a traditional scheme that used a tf-idf strategy to encode features, and the

second model employed a CNN. The first model was used to predict language variety

and the second to forecast gender. The combined e↵ort achieved 11th place out of

22 participants. Finally, the work of Sierra et al. in [109] used two CNN models to

separately address language variety and gender predictions. This time the authors

obtained the 8th place overall.

For the 2018 edition of the AP task at PAN, DL approaches were tried again. In

[110], Bayot et al. used WEs trained over Wikipedia texts, using the Skipgram variant

of the word2vec algorithm. Then these WEs were fed to a Long Short-Term Memory

(LSTM) RNN to predict the gender of Twitter posts. They achieved the 18th place

out of 23 competitors. Besides the AP task, the PAN event also hosts several other

challenges that are closely related to AP, that is the case of the Style Change Detection

(SCD) problem (i.e., to determine if a text is written by one or many authors). The
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work of Hosseinia et al. in [51] is worthy of mention since attained 2nd place overall

at this competition. The authors approached this task by using two parellel LSTM

RNNs with attention mechanisms. Back to the AP problem, Martinc et al. employed

in [111] a multi-modal approach, that is, using both text as well as image posts from

users to attempt the prediction of gender. For the textual part of the model they

used a CNN that was fed tf-idf statistics of words, along with character and word

embeddings. For the latter, fastText pre-trained WEs were employed. For image

prediction they used a pre-trained CNN-VGG-16 type architecture. The combined

multi-modal methodology obtained the 8th place out of 23 participants. Next, Nils

Schaetti also employed a multi-modal approach in [112], using a character-level CNN

for the text part and the pre-trained ResNet18 (as in 18 layers) for images. This

technique attained 16th place. Finally, Sezerer et al. achieved the 20th place out of

the 23 contestants fusing a CNN with attention mechanisms [113].

Lastly, in the 2019 edition at PAN the objective was to predict whether an author

was a bot or a human, and also the gender (e.g., bot, female, male). Again, more

DL strategies were put to the test, that is the case of Polignano et al. in [52],

they used a CNN approach, and was the DL method best ranked achieving the 11th

place overall. In addition, but with more limited success several DL techniques were

also evaluated, using various forms of architectures, such as a merged strategy of

RNNs with CNNs, RNNs with hierarchical attention and a LSTM RNN with a voting

strategy [114, 115, 116, 117, 118, 119].

It can be acknowledged that with a few exceptions, most of the novel DL ap-

proaches employed at di↵erent AP shared tasks achieved sub-optimal results, and the

top-quartile places remain under control of “traditional” methodologies. Nonetheless,

the number of DL techniques tested at these events is expected to increase in the next

years. Whether these type of methodologies could outperform “classic” methods or

not, is yet to be seen.
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5.3 Methodology

5.3.1 Background

To address the problem of AP using the PAN datasets, it is common to employ a

“traditional” ML approach, since these methods had historically achieved the best

results. One reason for this could be the nature of the training data, being relatively

small for DL standards. The method introduced in this chapter focuses on a DL

architecture that performs competitively even with limited size datasets. This novel

architecture called the Profiler is based on the self-attention mechanism introduced

by the transformer network proposed by Vaswani et al. in [68], and on the theWide &

Deep architecture conceived by Cheng et al. in [13]. The transformer has become the

“go-to” DL method for NLP endeavours in the last months, even beginning to make

RNNs a little obsolete. This methodology has shown its quality mainly in translation

tasks and the pre-training of Language Models (LM), capable of also achieving SoA

results in language understanding tasks, such as General Language Understanding

Evaluation (GLUE) comprised of 9 tasks, the Stanford Question Answering Dataset

(SQuAD) and Situations With Adversarial Generations (SWAG) among others. To

the best of my knowledge, the transformer has not yet been used in the AP problem,

nonetheless it has been employed in NLP related tasks such as irony detection by

González et al. in [75].

Initially, to address the AP problem a transformer based architecture was im-

plemented to asses the reach of “only” attention mechanisms. This methodology is

comprised of a single head self-attention module for contextualizing Word Embed-

dings (WE). This model will be referred to as the Transformer Based Contextualizer

(TB-C) for the rest of this chapter. See (b) model in Fig. 5.1

On the other hand, another transformer based architecture is introduced, which

is the main contribution of this chapter. The Profiler is a transformer based network

with wide and deep branches specially designed for AP tasks. From here on it will be

known in figures and tables as the Wide & Deep Transformer (WD-T). See (a) model

in Fig. 5.1. Furthermore, to establish a frame of reference to asses their performance,

they were compared with o�cial results from the AP shared tasks at PAN 2017 to

2019.
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Fig. 5.1. The Profiler on the left (a) (WD-T) and the Transformer based contextualizer (b)
(TB-C) for author profiling

5.3.2 The proposed architecture

Both, the WD-T and the B-TC are based on the encoder module of the original

Transformer, since the task at hand is classification, we can dispense of the decoder

module. As can be seen in Fig. 5.1, both approaches shared the same encoder model,

since it is in here where the self-attention mechanism is implemented. As explained

in Chapter 4, WEs are non-contextual word vectors, and since context is important

in NLP tasks, the self-attention structure “contextualizes” them. First, the encoder

module is provided with WEs produced with the word2vec skipgram algorithm, also

explained in last chapter. Other WEs algorithms were explored such as fastText, along

with multiple combinations of hyper-parameters, as was done also in last chapter.

Ultimately the best WE technique and hyper-parameter blend was word2vec skipgram
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with a window of 30 and 300 dimensions. These WEs were produced using each train

partition of the 2017, 2018 and 2019 datasets for English and Spanish languages, thus

producing six di↵erent sets of WEs. These datasets are composed of 100 Twitter posts

from each user. A document (d), which will be the term used from here on to depict

the text produced by a user, is comprised as the sequential concatenation of those

100 posts from each user, thus having variable length documents across the dataset.

Once the WEs were obtained, the document representations to feed the encoder are

composed as follows:

• Since the encoder needs fixed length sentences, the maximum document length

both in train and test partitions is computed for each dataset (year/language

combination). See statistics of the datasets in Table 5.1.

• A document is formed as an array of WEs representing each word in it, with

a length of the maximum document found in the current dataset, padded from

left to right with vectors of zeros (0’s) with the same dimension of the WEs

(300).

The whole travel of the WEs through the encoder, up to before the final softmax

function that predicts the output is explained next:

1.- The document representations are fed to the self-attention module. This mod-

ule is called multi-head attention in the original transformer, because is comprised

of up to 8 identical self-attentive mechanisms (heads), each one “pays” attention to

di↵erent aspects of the words (e.g. tense of the verbs). For the AP task in this work

an ablation process showed that a single-head self-attention delivered the best re-

sults, hence the attention mechanism proposed in this thesis contains only one head.

The self-attention process can be summarized in Eq. 5.1. Each WE is multiplied

by three di↵erent matrices: WQ, WK and W V (initialized before training with the

glorot uniform method), thus producing the vectors:
�!
Q ,

�!
K and

�!
V , as shown in

Fig. 5.2. In a nutshell what the attention mechanism do is apply the dot-product

attention between the words (WEs) in each document but by scaling it by the factor
1p
dk
, where dk is the dimension of the attention head, this is done to attenuate the

e↵ect of extremely small gradients. Note that attention vectors
�!
Q ,

�!
K and

�!
V have

lower dimensions than the WEs (64 as proposed by the original transformer paper).
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This dimension reduction is only done to make the estimate of the attention constant

and more memory e�cient. These vectors allow to calculate a score of “how much”

attention to pay in each word in the document. The softmax function normalizes the

scores and establishes an attentive amount of each word at its position with respect

to the rest of the words. Next, the value vector of each WE is multiply by the soft-

max result, so the “less” important words can be diminished and also the opposite

is true for the “more” important terms. Finally, all the weighted (by the softmax)

value vectors are added up to produce the Z vector, which is the original WE with its

“attention” embedded (contextualized). The computation of the self-attention phase

is quadratic in complexity (O(n2)), and also occurs entirely in memory, thus the use

of a proper Graphics Processing Unit (GPU) is almost mandatory even for relatively

small sized datasets. Also it is important to mention that the operations over vec-

tors depicted in Fig. 5.2 are done at matrix level in the actual implementation for

e�ciency purposes.

Table 5.1: Amount of samples in each dataset. Also, the average length of train and test documents
is included. The length of a document is measured in number of tokens (words) in each sentence.
The standard deviation is included for reference.

Documents Train length stats Test length stats

Dataset Lang. Classes train test total Avg. Max. Avg. Max.

2019 ENa Tb=2, Gc=3 4120 2640 6760 1948.02 5533 1950.19 6721
SPd T=2, G=3 3000 1800 4800 1784.27 4966 1779.32 5155

2018 EN G=2 3000 1900 4900 1597.24 2611 1595.17 2630
SP 3000 2200 5200 1532.18 2861 1540.45 2749

2017 EN G=2, Ve=6 3600 2400 6000 1592.89 3258 1589.65 2707
SP G=2, V=7 4200 2800 7000 1517.35 2861 1528.60 2749

aEnglish
bType
cGender
dSpanish
eVariety

Attention(Q,K, V ) = Softmax

 
QKT

p
dk

!
· V (5.1)

2.- Next, the output of the self-attention module is pass through an Add & Norm

stage, which is described in Fig. 5.3. What this phase does is take the original WE

vectors and add them to the Z vectors in their respective positions, then the produced
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Fig. 5.2. The Self-Attention mechanism.

added vectors are processed with a Layer Normalization algorithm, which opposite to

for example a mini-batch, normalizes the values feature-wise instead of by samples.

3.- Then, the output of this Add & Norm module is fed to a Feed-Forward Neural

Network (FFNN), which also is in turn passed to another Add & Norm module with

the residual connections of last stage. See Fig. 5.1.

Steps one to three comprises the encoder. Which can be stacked Nx times, as

also seen in Fig. 5.1. Since the amount of samples in the datasets employed in the

experiments of the present work is limited, the best results were attained with only

one encoder (N = 1). But it is worth explaining how the stacked encoders work. If

several structures were to be stacked, only the first encoder would receive the WEs of

the document, then the output of the first encoder is fed to the next one and so on.

Since in this case there is only one encoder, its output is passed directly to a Global

Pooling Average stage, which summarizes the Z attentive vectors dimension wise for

better performance. Finally, right before the softmax function used for classification,

a layer normalization module processes the pooled output.

For the TB-C model, this is the complete methodology. The softmax activation

function is finally employed to calculate the probability of each class, depending on

the task (see Table 5.1).
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Fig. 5.3. The Add and Layer normalization phase after self attention

5.3.2.1 The Profiler aka the Wide & Deep Transformer (WD-T)

However as previously established, for AP tasks “attention” might not be “all you

need”. This is why the Profiler (WD-T) is introduced. Same as with the TB-C,

the WD-T employs the same encoder architecture, which is the deep part. For the

wide element, the method needs to incorporate known useful features for the AP

problem. As stated by Pennebaker in [104], certain words have the power to identify

characteristics of authors of texts. For instance in such work, it is noted that men

tend to employ articles at a higher rate than women. At the same time women use

personal pronouns such as ’I’, ’me’, and ’my’ more frequently, as well as verbs. Thus,

as proposed by Pennebaker and also by Ortega-Mendoza et al. in [41], personal

information is very useful for the profiling of individuals. The WD-T incorporates

this information into the network through the wide branch, so the model can predict
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more accurately the type of author (e.g., gender).

In this regard, the addition of the wide element is of great importance for the

general performance of the WD-T. Without it (i.e., only the TB-C model) as the

reader will notice in the 5.5 section, the overall e�ciency is significantly reduced. In

the following lines, the rationale behind the wide component is explained.

Inspired by the work of Ortega-Mendoza et al. in [41], a novel measurement was

devised to represent the style and personal information of an author. This value

is called Term Specificity-Exponential Personal Reward (TS-XPR). To compose the

TS-XPR, first we need to compute a precision (⇢) and recall (⌧) values, as proposed

by Ortega-Mendoza et al., in turn also inspired by information retrieval evaluation

metrics transferred to the context of personal information. To accomplish this we

need to identify those sentences which include personal information. As the lector

can remember, each user’s document is formed by the concatenation of exactly 100

tweets, hence each post will be treated as a sentence. In this way we can divide a

document dj (being j the j-esim user), in two sets of sentences: Pj and Sj, where

P is the set of all posts containing personal information, and S all posts in total.

In order to classify a post as belonging to the set P , it is necessary to verify if any

of the next personal pronouns appears in it: “i”, “we”, “me”, “us”, “my”, “mine”,

“our”, “ours”, “myself”, “ourselves” for English, and “yo”, “me”, “mi”, “conmigo”,

“nosotros”, “nos”, “nosotras” for Spanish.

Therefore, we have Eq. 5.2 (⇢), which represent the amount of personal informa-

tion contained in a word, that is to say the relation of the number of personal posts to

all posts. In addition, Eq. 5.3 (⌧) reflects the fraction of the set of personal sentences

(P ) the term ti appears on, being i the i-esim word in the document dj.

⇢(ti,dj) =
#(ti, Pj)

#(ti, Sj)
(5.2)

⌧ (ti,dj) =
#(ti, Pj)

#(Pj)
(5.3)

After computing ⇢ and ⌧ , an F-score like metric can be calculated in order to

produce a more stable measure of personal information. Eq. 5.4 shows how to

compute this score.
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F(ti,dj) = 2 ·
⇢(ti,dj) · ⌧ (ti,dj)
⇢(ti,dj) + ⌧ (ti,dj)

(5.4)

Moreover, this information can now be used to weight terms in a document,

whether if appears on a personal sentence (P ) or not. Ortega-Mendoza et al. also

proposed a weighting scheme based on the F measure. The rationale behind it is

that a term weight value begins from the overall frequency of the term, then it is

exponentially rewarded only if appears in personal sentences, which will not occur if

it surfaces in non-personal posts. In addition, an o↵set value that describes the usage

of words across documents is added to the weight of the term, thus reflecting not only

the “personal” information magnitude it contains, but also the importance of such

depending on the user-specific usage of the word. Eq. 5.5 describes this whole idea

called the Term Specificity-Exponential Personal Reward (TS-XPR).

TS-XPR(ti,dj) = log

✓
#(dj)

1 + #(ti, dj)

◆
+ 1 +

 s
#(ti, dj)

#(dj)

!1�F(ti,dj)

(5.5)

As can be seen, the first term of the equation is the commonly known inverse doc-

ument frequency (idf), computed locally for each user’s posts to o↵set the importance

of a word depending on its usage by each author. The second term of the formula is

the weighting scheme proposed in [41].

The original transformer was devised mainly for translation purposes, hence the

decoder module was also needed. In addition, in order to learn the context of words,

meaning the significance of the place a term occupies in a sentence or document, said

transformer needed to learn the position of words, which a RNN implicitly learns

by sequentially processing the inputs. A transformer does this in a more e�cient

manner by adding a Positional Encoding (PE) to the input WEs. Such PEs represent

the order of words encoded simultaneously in a sinusoidal and a cosine signal, with

the added advantage that such functions are infinite in time, hence not limiting the

length of the sentence being encoded. For the WD-T (as well as the BT-C), such PEs

were actually detrimental, thus it can be assumed that the actual position of words

is irrelevant in the AP task, focusing the attention only in the neighboring words to

establish context.
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Up to this point, the set of TS-XPR values for each term in a user’s document

needed to be incorporated into the network. Several approaches were tried, such

as adding or multiply them to the input WEs. The idea was to influence the self-

attention mechanism so it paid more attention to “personal” and “thematic” terms.

Needless to say that it did not work as expected. So another method was attempted.

Following the original idea of Vaswani et al. in [68] to compute the PEs, the same

method was used to encode the TS-XPR values into a sinusoidal and a cosine signal

to obtain encodings or vectors instead of single values. Eq. 5.6, is used to convert

the TS-XPR values into encodings of the same dimension of the WEs (300), which

are now called Term Specificity Personal Encodings (TSPE). The idea is to produce

embeddings of #dim dimensions by computing the sin and cos of the TS-XPR value

divided by the factor 1
10000(2k/#dim) , where k is the current iteration starting from

n = 1 until the number of dimensions is reached. If the iteration k is even, the sin

function is invoked, otherwise the cos function is calculated, thus producing a vector

of #dim = 300 alternating the values with sin and cos functions depending if the

dimension is even or odd (See Eq. 5.7).

TSPE(ti,dj) =

8
><

>:

Sin
⇣

TS-XPR(ti,dj)

10000(2k/#dim)

⌘
if n = 2k

Cos
⇣

TS-XPR(ti,dj)

10000(2k/#dim)

⌘
if n = 2k + 1

(5.6)

[sin(W(2k)), cos(W(2k+1)), ...] (5.7)

where W =
TS-XPR(ti,dj)

10000(2k/#dim)

Once the TS-XPR values were converted into TSPEs, the most logical option

was to add or concatenate them to the input WEs, just like the PEs in the original

transformer. This also came to no fruition. The self-attention mechanism was again

unable to grasp the intended encoded information. One reason could be that the

TSPEs subtly conceal the needed information, so a novel methodology was devised

to integrate the TSPEs into the network, so they could be more clearly fathomed.

The manner the TSPEs were incorporated into the network is inspired by the
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work of Chen et al. in [13], which introduces wide & deep architectures that could

somehow merge the generalization power of deep networks and the task-specific fea-

ture engineering of linear models. The original wide & deep network simply utilized

a general linear model of the form y = W Tx + b for the wide features, and a FFNN

as the deep component. Then the wide and deep components are integrated using

a weighted sum of their outputs, for finally establishing a joint training stage using

a logistic loss function for classification, which is common for both components. On

the other hand, the WD-T model proposed in this thesis is shown in Fig. 5.1 left

graph (a). It can be observed that the TSPEs, which represent the wide element, are

processed parallel to the encoder module. These TSPEs are also passed through a

Global Average Pooling and a layer normalization stage, then they are concatenated

to the vectors outputted by the encoder, right before the final softmax function used

for classification. The rationale behind this architecture relies in feeding the network

with both, the WEs that are in turn processed with the self-attention mechanism (i.e.,

deep component) and the wide feature vectors that encode the stylistic and personal

information of the words (TSPEs). The same structure for composing the document

representation of WEs to be fed to the encoder is used to construct an array of the

wide features, but instead of the WEs the TSPEs are put in the respective place

the term occupies in the document. The wide component of the network was able

to learn the wide features simultaneously with those (i.e., deep element) discovered

by the self-attention module, thus producing a joint wide & deep learning by means

of sharing the same loss function, in this case categorical-crossentropy. It is worth

mentioning that the backpropagation of the error is done parallel in the wide and the

deep branches.

5.4 Experimental Setup

As mentioned before, the experiments addressed in this chapter tackle the AP prob-

lem in datasets of the PAN initiative of years 2017 to 2019. In table 5.1 the statistics

of such datasets describe the size of the train and test sets for each year, also it is im-

portant to note that the maximum length of the documents is shown. This is relevant

because the input of the proposed models is fixed in length, so the maximum length is

taken into account to determine the size of the padded input for the models. In Fig.
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5.4 can be seen that for the 2019 dataset, the maximum length of the concatenated

documents is the largest of all three years. This might be caused in part for the task

of detecting bots from humans. Most of the posts produced by bots are very large

due to the excessive use of hashtags and re-tweets. In addition, due to restrictions in

memory for processing the self-attention module, the 2019 dataset was truncated to

a maximum of 3500 tokens (WEs) of length.

For the pre-processing of the datasets a typical approach was employed. Words

preceded by a “#” sign were renamed with the label “hashtag”. Likewise, words

preceded with “@” and “www” were replaced with “user” and “url” respectively. In

addition all words were lower-cased, and for the Spanish language the accent sign was

removed. A lemmatization process was also performed, using The Natural Language

Toolkit (NLTK) python library for English [120], and the Stanza python library from

the Stanford NLP Group for the Spanish language [121].

Fig. 5.4. train and test samples for the 2019 dataset.

For the hyper-parameters of the encoder most of the default parameters proposed

by Vaswani et al. in [68] were used. The dimension size of the WEs was set to 300

with a training window value of 30. The number of attention heads departing from

the original transformer (8 heads) was set to 1 with a size of 64. The batch size

for the training and evaluation was set to 32, and the length of the input document
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is the maximum length of documents for each year’s dataset (e.g., 2630 for 2018-

English, 2861 for 2017-Spanish). The Adam optimizer for the loss function was

used with hyper-parameters learning rate=0.001, beta 1=0.9, beta 2=0.999. In the

original transformer architecture the Noam learning rate schedule is used to alter

the learning rate between batches of training, however a fixed value delivered better

results than using the scheduler. Furthermore, as already described only 1 encoder

layer was used, since this configuration delivered better results. It is worth mentioning

that an ablation process was performed to determine the optimal number of stacked

encoders as well as the number of heads in the self-attention module and the optimal

learning rate scheduler. Finally, a patience of 30 epochs was established as early

stopping policy.

5.5 Results

As already discussed, normally the AP shared tasks of the PAN initiative are attained

by “traditional” ML approaches. However, in the last couple of years more DL ap-

proaches have been tried but with limited achievements overall. It can be speculated

that one of the reasons for this is the general size of the datasets, which might be

considered “small” for DL standards. In this chapter two DL models are proposed to

tackle AP tasks in the datasets described in table 5.1. The results achieved by these

models were positioned in top-quartile places of o�cial results in the competitions.

Noteworthy is the performance achieved by of the central model introduced in this

work (WD-T), which also outperformed all participant DL methodologies. Fig. 5.5

shows the performance of the WD-T and the TB-C in five shared AP tasks.

When compared only with DL proposals in each year’s competition, it can be seen

that the main contribution of this work: The Profiler or Wide & Deep Transformer

(WD-T), outperformed every other DL method. Take for instance the results shown

in Table 5.2, the WD-T model clearly surpassed the results of all DL proposals in the

2017 gender task.
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Fig. 5.5. Boxplots depicting the performance of the WD-T model and the TB-C vs all
competitors at PAN (2017-2019). A black filled circle represents the WD-T results, and a blank

circle depicts the TB-C model. The shown results are the average of English and Spanish
languages for each dataset/task. Diamonds portrait the outliers.

Table 5.2: Accuracy of the WD-T and TB-C models & best DL proposals at 2017 gender task.

Ranking Team English Spanish Average

1 WD-T 0.8133 0.8050 0.8092
2 Miura et al. (RNN+CNN+Attention) 0.8046 0.8118 0.8082
3 TB-C 0.8041 0.7921 0.7981
4 Franco-Salvador et al. (DANa) 0.7958 0.7721 0.7840
5 Sierra et al. (CNN) 0.7821 0.7700 0.7761

aDeep Averaging Networks

Similarly, for the 2017 language variety task the WD-T attained the best DL re-

sults. It is worth noting though, that both the WD-T and TB-C models achieved very

similar results, meaning that the WD-T could not stand out clearly against the TB-C
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model. One possible explanation could be the fact that the task at hand (language

variety) do not require at the same level the personal and thematic information of

the wide element. Thus it can be assumed that personal or thematic data is not as

relevant for identifying the language variety as for predicting the gender of an author.

Table 5.3 shows this results.

Table 5.3: Accuracy of the WD-T and TB-C models & best DL proposals at 2017 language variety.

Ranking Team English Spanish Average

1 WD-T 0.8683 0.9461 0.9072
2 TB-C 0.8662 0.9457 0.9060
3 Miura et al. (RNN+CNN+Attention) 0.8717 0.9271 0.8994
4 Sierra et al. (CNN) 0.8392 0.9450 0.8921
5 Franco-Salvador et al. (DANetworks) 0.7588 0.9000 0.8294
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In 2018, the number of DL proposals incremented. In this year’s shared task the

objective was to predict only the gender of authors, but using both textual and image

features. In table 5.4 it can be observed again that the WD-T clearly outperforms

the rest of the DL participants, and it is more separated from the TB-C, which

demonstrates personal features evidently a↵ect in a positive way the outcome of the

model. It is important to make it clear that both the WD-T and the TB-C used only

textual features for this task.

Table 5.4: Accuracy of the WD-T and TB-C models & best DL proposals at 2018 gender task.

Ranking Team English Spanish Average

1 WD-T 0.8178 0.7918 0.8048
2 Kosse et al. (FFNN) 0.8074 0.7918 0.7996
3 Veenhoven et al. (Bi-LSTM with attention) 0.7926 0.8036 0.7981
4 TB-C 0.8105 0.7805 0.7955
5 Sierra-Loaiza & González (CNN) 0.8011 0.7827 0.7919
6 Takahashi et al. (RNN+CNN) 0.7968 0.7864 0.7916
7 Martinc et al (CNN+fastText) 0.7900 0.7782 0.7841
8 Aragon & Lopez (CNN+WEs) 0.7963 0.7686 0.7825
9 Schaetti (CNN + resnet18) 0.7711 0.7359 0.7535
10 Sezerer et al. (CNN+attention) 0.7495 0.6655 0.7075
11 Raiyani et al. (FFNN+fastText) 0.7279 0.6436 0.6858

Furthermore, in the 2019 shared task there were two objectives, first to identify

humans from bots, and then predicting the gender (i.e., female, male, bot). In this

competition, the organizers made remarks of the fact that even more DL methodolo-

gies were put to the test [122]. They also highlighted the work of Polignano & de

Pinto (which uses a CNN) [52], as the best positioned DL approach attaining the 11th

place overall. Nonetheless, when we see Tables 5.5 and 5.6, it can be observed that

the WD-T outperformed this and the rest of the DL proposals. In addition, if the

o�cial results are rearranged to place the WD-T, it would achieve 6th place overall

and replaces Polignano & de Pinto’s CNN at the 12th place.

The reader might argue that the di↵erences in accuracy are not significant enough.

However historically in these competitions the top places are not that far apart from

each other, and a gain of just a tenth of a percentage point could be very di�cult

to attain. This is relevant to fully understand the context of the achievements of the



CHAPTER 5. A WIDE & DEEP NETWORK FOR AUTHOR PROFILING 107

Table 5.5: Accuracy of the WD-T and TB-C models & best DL proposals at 2019 type task (bot
vs human).

Ranking Team English Spanish Average

1 WD-T 0.9254 0.9194 0.9224
2 Polignano & de Pinto (CNN) 0.9182 0.9156 0.9169
3 TB-C 0.9053 0.8894 0.89735
4 Petrik & Chuda (CNN+RNN) 0.9008 0.8689 0.88485
5 De La Peña & Prieto (FFNN) 0.9045 0.8578 0.88115
6 Bolonyai et al. (RNN+hirerch attn.) 0.9136 0.8389 0.87625
7 Onose et al. (RNN+hirerch attn.) 0.8943 0.8483 0.8713
8 Halvani & Marquardt (FFNN) 0.9159 0.8239 0.8699
9 Zhechev (Voted LSTM) 0.8652 0.8706 0.8679
10 Dias & Paraboni (CNN+RNN) 0.8409 0.8211 0.831
11 Qurdina (CNN) 0.9034 0.0000 0.4517

Table 5.6: Accuracy of the WD-T and TB-C models & best DL proposals at 2019 gender task
(bot, female, male).

Ranking Team English Spanish Average

1 WD-T 0.8189 0.7844 0.8017
2 Halvani & Marquardt (FFNN) 0.8273 0.7378 0.7826
3 Polignano & de Pinto (CNN) 0.7973 0.7417 0.7695
4 TB-C 0.7841 0.7483 0.7662
5 Petrik & Chuda (CNN+RNN) 0.7758 0.7250 0.7504
6 De La Peña & Prieto (FFNN) 0.7898 0.6967 0.7433
7 Zhechev (Voted LSTM) 0.7360 0.7178 0.7269
8 Bolonyai et al. (RNN+hirerch attn.) 0.7572 0.6956 0.7264
9 Onose et al. (RNN+hirerch attn.) 0.7485 0.6711 0.7098
10 Dias & Paraboni (CNN+RNN) 0.5807 0.6467 0.6137

WD-T. Even its sustained top performance against di↵erent configuration of deep

neural networks is a sign of its robustness.

5.6 Discussion

Why do DL architectures underperform in AP tasks at PAN?. One reason, as already

discussed, could be the size of the datasets. An ideal dataset for DL (or any ML

for that matter) is rarely found or easily constructed. Thus, DL strategies must
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adapt to small or “less” than ideal datasets. Another possible explanation for the

underachievement of DL methodologies in AP tasks at PAN is that the generalization

prowess of DL architectures are limited to contextual features. Whilst the AP task is

known to be a complicated problem that requires finer grain features to be grasped.

These subtle features might not be picked up by the self-attention mechanism, which

makes the wide branch in the WD-T of great importance.

For the AP problem, literature suggests that stylistic choices, along with usage of

words and personal information embedded in texts, could greatly help the profiling

of authors, from predicting the gender and age, to even forecasting their personality.

In this chapter a novel DL model is proposed: The Profiler aka The Wide & Deep

Transformer (WD-T). This architecture takes into account the attention “paid” to

the context of words, while also linearly considers features (stylistic and personal)

engineered expressly for the AP problem. The wide element can be substantiated

with works in the literature that addresses how words help the profiling of authors,

take for instance the work of Pennebaker [104] among others. But how to explain the

deep element (self-attention) involvement in the matter? It has been made clear that

the attention in the encoder can not be intentionally focused onto specific words, and

that dot-product attention is mainly devised to “contextualize” words. But this is no

small action, it is fundamental in NLP tasks, and it has been proved to be of great

value in AP endeavours.

In Fig. 5.6 left side, the attention put into a segment of a document from an

Australian female can be seen. Note that most words pay attention to the phrase

“on my face”, specially the word “photo”. Also, in the right side of the figure, the

attention over a portion of a document from a Colombian male is depicted. In this

case, the attention is more disperse, but it can be clearly seen that “camino”, “luz”,

“de”, “url” and “yo” (Spanish for “road”, “light”, “of”, “I”), are attended more than

any other word. In the naked eye, the relationships between words might not be all

clear, specially in the example on the right. This can be explained from the stand

point of the length of documents. The original transformer was devised with mainly

translation tasks in mind, which employs relatively short sentences. The transformer

proposed by Vaswani et al. took sentences up to 120 words in length. Furthermore,

recent works have tried to increase the attention reach on the dependency of larger

sentences, that is the case of the Transformer-XL, proposed by Zihang Dai et al.
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in [123]. Their work expanded the attention span to 640 words, and even showed

acceptable performance with up to 3800 tokens. On the other hand, the role of the

self-attention mechanism that contextualize custom pre-trained WEs is not entirely

clear in AP tasks with documents of up to 3500 words. Moreover, when the attention

is observed on just a small portion of the whole document, the picture could be

deceiving. Nonetheless it is evident that the process of contextualizing WEs with

self-attention, even in very large documents, plays an important role in the learning

mechanism.

Furthermore, as mentioned earlier the length of the input documents for the 2019

dataset must be truncated to 3500 words. The reason was the limited memory of

the GPU card employed in the experiments1. The lector can appreciate in the foot-

note that the computational resources employed are of considerable capacity, yet with

very large documents even those could be insu�cient. One can only wonder whether

the WD-T results would be even better should lengthier documents were allowed.

The answer could be closer than imagined. In the recent work of Kitaev et al. en-

titled Reformer: The E�cient Transformer [124], they introduced a more e�cient

architecture that replaced the dot-product attention with a locality-sensitive hashing,

which reduced the computational complexity from O(n2) to O(nlogn), where n is

the length of the document. They attained comparable results to the original trans-

former with less computational resources. So a possible future work envisioned for

the WD-T could be an improvement of the current self-attention mechanism with the

one mentioned by Kitaev et al. or even a novel one.

In Fig. 5.7 two samples of attention on correctly classified specimens can be seen

for the 2019 dataset. On the left side a sample of a bot is shown, whereas on the right

side a human-female is depicted. It is interesting to note that the bot sample on the

left side, is paid more attention on the terms closer to the word “hashtag”, which

is consistent with the idea that bots significantly employ more often hashtags and

re-tweets. In the example on the right, the document excerpt of the human-female

shows that the words “mi”, “yo”, “url” and “gustar” (Spanish words for “my”, “I”, “to

like”) are paid more attention than others. This is also consistent with the rationale

of women being more self-aware than men [104].

1An NVIDIA Titan RTX GPU with 12Gb of memory installed in a server with an Intel Core i9
CPU with 64Gb of RAM
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Fig. 5.6. Single-head self-attention on 2017 dataset. Left graph depicts attention in the
English/gender task, right graph represents attention on the Spanish/language variety task. A

lighter color represents “more” attention.

Fig. 5.7. Single-head self-attention on 2019 dataset. Left graph depicts attention in the
English/type task (bot vs human), and the right graph represents attention on the Spanish/gender

task (human, female, male). A lighter color represents “more” attention.

Finally, in the 2018 sample of a female seen in Fig. 5.8. It is interesting to notice
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that the words “david” and “bowie” are related. Also, the words “book”, “lock”

and “chooks” (which is often employed in Australia to refer to chickens), are paid

attention from many words, specially for “chooks”. Although it is not disclosed if the

female is from or resides in Australia, it would be amusing to find out the nationality

of the user.

The samples shown in the attention Figs. 5.6, 5.7 and 5.8 are sentences extracted

from whole documents (100 concatenate tweets for each user), some of them are

comprised of two or three tweets, maybe even topic unrelated. So the attention

depicted in the figures might be a misleading window into what the self-attention

module is really focusing on for each user. In addition, as it happens with most DL

architectures, the interpretation of the inner structures such as the path lengths of

the neurons or the attentive dot-product scores, can only be partially explained, their

true meaning or reasoning behind them might remain undiscovered for a while.

Fig. 5.8. Single-head self-attention on the 2018 English/gender task. A lighter color represents
“more” attention.
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In Fig. 5.9 the performance of the WD-T on the 2017 dataset is shown. It can be

seen on the left side the gender prediction task for English and on the right side the

language variety forecasting for the Spanish language. In the confusion matrix and

the summary of the accuracy, F1 score, precision (p) and recall (r), the scores seem

very stable, meaning that the F1 score demonstrate the balance between the p and

r values, and even very close to the accuracy metric. In addition, a similar strong

performance is described in Fig. 5.10 for the 2018 and 2019 datasets. On the left

side the 2018 gender prediction task for English is displayed and on the right side the

2019 type (e.g., “bot”, ”human”) for the Spanish language.

In conclusion, to the best of my knowledge, transformer based models for the AP

task have not been employed so far in any shared task competition, or published in

literature. The two models here proposed (WD-T & TB-C) showed the e�cacy of

the self-attention mechanism in the AP task. However, the model that stands out

the most is the WD-T aka The Profiler. The reason for this can be explained due

to the wide branch of the architecture, which helps the correct profiling of users by

contributing expressly engineered features for the AP problem in a manner that the

deep element could not grasp. The novel WD-T architecture achieved top-quartile

results in three AP shared tasks over English and Spanish datasets. Moreover, when

compared only with DL strategies the WD-T outperformed them all.



CHAPTER 5. A WIDE & DEEP NETWORK FOR AUTHOR PROFILING 113

Fig. 5.9. Confusion matrix for 2017 predictions tasks: English/Gender & Spanish/Lang. variety.

Fig. 5.10. Confusion matrix for 2018: English/Gender & 2019: Spanish Type.



Chapter 6

General conclusions and further

discussion

Digital text forensics handle the discovering of useful information in digital data

banks. From the stand point of security, exposing Internet predatory activities or

detecting fraud & cyber-terrorism are actions of great benefit. In addition, tracking

suspicious activities over the Internet that could be potential threats to society is of

great interest. However, there is a thin line that divides what might be considered

a security concern and what can be viewed as an invasion of privacy. So developing

proper technological solutions that are both e↵ective and respectful of confidentiality

is very important.

Among the several sub-categories of these forensic activities we can find author-

ship analysis, which includes plagiarism detection, author identification and author

profiling. Particularly, author profiling is a computational task that attempts the

prediction of personal characteristics of authors of digital texts (i.e., posts in blogs

or social media) such as gender, age or even personality traits. In addition to the

security concerns already mentioned, author profiling can also be helpful in improving

customer service experience, diagnosis of neurological disorders (e.g., anxiety, depres-

sion) or detection of plagiarism, thus its relevance is evident. Author profiling is an

ongoing natural language processing problem that is far from being resolved.

In the last decade author profiling tasks have been tackled with machine learn-

ing algorithms, using “traditional” techniques and in recent years employing deep

learning approaches. In this thesis the author profiling problem was addressed from

114
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two fronts. First, proposing a novel and strong feature engineering methodology that

could be categorized as classic machine learning. In such solution a new metric was

devised (rtv, relevance topic value) for quantifying the importance of a word within

a document. Then it was integrated along with other numerical statistics like term

frequency-inverse document frequency to produce a weighting scheme of terms (en-

coded as word embeddings) using genetic programming, for constructing document

embeddings (distributed representations of texts). The methodology attained com-

petitive results in all tasks where it was tested, and even achieved State of the Art

(SoA) results in some of them.

The second solution devised for the author profiling dilemma is based in deep

learning methodologies. It fuses ideas like self-attention mechanisms from the novel

transformer architecture and notions of blending deep and linear learning into one

model, from wide & deep networks introduced circa 2016. Moreover, it provides a

novel way to merge “stylistic” and “personal” information into the input word em-

beddings, which helps to increase the accuracy of the profiling. This novel approach

called The Profiler aka the Wide & Deep Transformer (WD-T), achieved top-quartile

results in three author profiling competitions, historically conquered by “traditional”

(non-deep learning based) methodologies. In addition, when compared with only deep

learning techniques, the WD-T obtained what can be considered SoA results, outper-

forming all strategies in those competitions and literature. Both approaches integrate

proven useful features documented in the literature for the profiling of authors, in an

original and e↵ective way that performed adequately.

6.1 Quality analysis

The reader might question the reason to propose two di↵erent methodologies to ad-

dress a unique problem. The reason for it lies in the potential practical applica-

tions of the scientific contributions of said approaches. When compared against each

other, both strategies have advantage as well as disadvantages. Whilst the weighting-

scheme strategy and the rtv metric introduced in Chapter 4 provides a novel yet

“traditional” methodology that could be implemented with a moderate amount of

computational resources. The second solution proposed in Chapter 5 is comprised

of a more sophisticated architecture potentially capable of greater achievements but
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at a greater computational cost, which might be less of a problem in the years to

come. Therefore, depending mainly in a potential application both strategies could

be equally helpful.

But how do both approaches compare to each other in the profiling of authors when

analyzing their hits and misses? It is noteworthy that some interesting findings were

discovered. Take for instance the gender prediction task for the English language in

the 2017 dataset. Both approaches tried more emphatically to learn words associated

with topics typically connected with gender. For example in Fig.6.1 the hits and

errors common to both approaches show a cross topic circumstance, where bigger

concentrations of words like “time” and “trump” where associated with the prediction

of men (c), and terms such as “thanks”, “day” and “love” where more correlated with

the prediction of women (d). At the same time, the errors can be explained by the

clouds (a) and (b), where it can be seen that samples with more quantity of terms

associated with the opposite gender were misclassified.

On the other hand, in Fig. 6.2 the reader can appreciate the di↵erence in perfor-

mance of both: theWide & Deep Transformer (WD-T) and the Genetic Programming

Evolved-Weighting Schemes (GPE-WS). In the first row (word clouds (a) and (b)) we

can observe that the GPE-WS gets right samples with more equally distributed terms

for males, and highlights words that are not historically associated with one gender

or the other for females, such as “persona”, “nunca” and “creo” (Spanish for “per-

son”, “never” and “believe”). These word clouds also represent the samples where

the WD-T was wrong. In addition, in the second row (word clouds (c) and (d)) it

can be seen the WD-T pays more attention to words like “Dios”, “plan” and “gran”

(Spanish for “God”, “plan” and “big”) for males, whilst also being more aware of

terms like “trump”, “anyos” (“años” before pre-processing) and “pais” for females.

It is interesting to note how the WD-T weighted terms commonly associated with

gender the other way around, meaning that it would be more typical for a women to

speak about God in Spanish speaking authors, while it would be commonplace for

men to speak about “donald trump”. In this case the WD-T was able to perceive

an open lexicon latent in the corpus, where nowadays in most western countries ev-

erybody can speak about anything, while at the same time the GPE-WS was not

able to distinguish said words. Even though both methods were practically tied in

accuracy performance for this dataset, it is noteworthy that the hits and misses of
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Fig. 6.1. Word clouds hits and errors for dataset 2017 gender English. Each word cloud represents
the group of all samples for each category of error and hit.

each approach were very di↵erent.

For some NLP tasks (e.g., depression prediction) it has been documented that

the length of texts might have some role to play [125]. For the author profiling task

addressed in this thesis, the length of documents for both approaches in common hits

and errors, as well as exclusive hits and misses was studied. Take for instance Fig.

6.3 and Fig. 6.4 for 2017 Spanish and 2018 English datasets respectively, we can

recognize that the distribution of samples around the length is normal-like shaped.

This fact gives the notion that for the author profiling task, at least in the experiments

performed in this work, the length of a document it is not relevant, as long as the

number of specimens available for training and testing is reasonable in amount.

Furthermore, in the 2019 author profiling task, only the second approach was

tested. As mentioned in Chapter 5, two transformer based models were designed to
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Fig. 6.2. Word clouds hits and errors for dataset 2018 gender Spanish. Each word cloud represents
the group of all samples for each category of error and hit.

tackle author profiling: the WD-T as well as the Transformer Based Contextualizer

(TB-C). In Fig. 6.5 we can observe the common hits and errors for both networks

when distinguishing bots from humans. In the first row (word cloud (a)) it is evident

that the error samples for humans included a high frequency of terms such as “ibm”

and “seo” (search engine optimization), which might explain why both networks

confused humans with bots. At the same time it can be seen in word cloud (b)

that the word “mrw” (my reaction when) was confused by the networks as a term

nowadays mostly associated with humans, thus producing errors when a bot employed

it. In addition, in word cloud (c) we can not observe nothing extraordinary in the

samples rightly classified as humans, in the mean time word cloud (d) depicts a more

balanced frequency of terms, slightly standing out words like “software”, “engineer”,

“project” and “manager”, which are technology terms likely correlated with bots.
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Fig. 6.3. Document length for hit and error samples in the 2017 Spanish dataset for gender

prediction.

It was well documented in Chapter 5 the architecture and performance of both

the WD-T and the TB-C. A natural question surfaced when comparing both networks,

since the WD-T performed way better than the TB-C. What samples classified ex-

clusively by either approach would look like? Fig. 6.6 answers this interrogation.

We can see in word clouds (a) and (b) the hits exclusively made by the WD-T for

humans and bots respectively. while in word clouds (c) and (d) the hits exclusively

produced by the TB-C. Although we can debate whether or not some terms are more

correlated with either humans or bots and what network got them better. What is

really interesting is the fact that the WD-T “viewed” the samples for what they really

represented: humans are expected to accentuate some words more than others (im-

print a personal signature), whilst a bot will employ terms in a more “artificial” pace

(i.e., a monotonous frequency). Hence we can hypothesized that the wide branch of
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Fig. 6.4. Document length for hit and error samples in the 2018 English dataset for gender

prediction.

the network can gather these nuances better than the deep side, complementing the

overall performance.

Moreover, in Table 6.1 the reader can observe the mutual and reciprocal behavior

of the approaches over some of the dataset collections. A metric called Maximum

Possible Accuracy (MPA) was used to measure complementariness of the methodolo-

gies [126]. The MPA is computed by dividing the total amount of hits (successfully

classified samples by at least on method) over the total number of test samples.

Meaning that a hypothetical perfect ensemble of the techniques could deliver better

results than each approach on its own. Also the common and exclusive errors are

described. We can see in the first two rows (gender prediction for English and Span-

ish in 2017 and 2018 datasets) that the MPA is considerably higher than the best

performer between the WD-T and the GPE-WS, thus suggesting they are somehow
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Fig. 6.5. Word clouds for samples in common hits and errors for the 2019 English dataset type
prediction task (bots vs humans).

complementary. Also the common and exclusive misclassifications show a balanced

distribution of error diversity, which is consistent with the MPA metric. Finally in

last two rows we can see a comparison between both transformer based approaches

(discussed in Chapter 5) for the English language. In this case we can see a less pro-

nounced complementariness between the approaches, since the MPA is closer to the

best performer classifier (WD-T). Also we can see that the mistakes exclusively made

by the TB-C are greater in number (disbalanced), which suggests that the WD-T

could be more e↵ective on its own.
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Fig. 6.6. Word clouds for samples in transformer exclusive hits and errors for the 2019 English
dataset type prediction task (bots vs humans).

6.2 Future work

Even though both approaches provide competitive performance and results, it is

recommended to further the research for the second approach. This methodology

demonstrated more potential to address more varied NLP tasks, also it would be

worth it to explore di↵erent and/or novel features to encode into the wide branch of

the network, this would depend on the specific task addressed. Also, since the field

of machine learning is continually evolving, and as of lately towards deep learning

networks with strong attention mechanisms, the WD-T is very likely to be equally or

even more successful in other NLP problems.
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Table 6.1: Accuracy and error analysis over some representative dataset collections.

English Spanish

Dataset Task/Classes Accuracy MPAa Errorsb Accuracy MPA Errors

2017 Gc=2 - 0.8842 278 - 0.8875 315
WD-Td 0.8133 - 170 0.8050 - 231

GPE-WSe 0.8167 - 162 0.8018 - 240

2018 G=2 - 0.8837 221 - 0.8781 268
WD-T 0.8178 - 125 0.7918 - 190

GPE-WS 0.8174 - 133 0.7986 - 175

2019 Tf=2 - 0.9352 171 - - -
WD-T 0.9163 - 26 - - -
TB-Cg 0.8974 - 79 - - -

2019 G=3h - 0.8458 407 - - -
WD-T 0.8044 - 71 - - -
TB-C 0.7781 - 221 - - -

aMaximum Possible Accuracy
bCommon/Exclusive
cGender: female, male
dWide & Deep Transformer
eGenetic Programming Evolved-Weighting Scheme
fType: human vs bot
gTransformer Based Contextualizer
h
female, male, bot

6.3 Final discussion

What could be the philosophical implications of the proposed methodologies? The

answer might be found in the problem addressed originally. Why is author profil-

ing important nowadays? Is it really that relevant? Recently the discussion about

ethics in the Machine Learning (ML) field has become controversial. Much like several

current topics, ML it is not exempt of debate. With the current state of a↵airs regard-

ing subjects such as diversity among the workplace or the equality between gender,

there has been a discussion whether ML algorithms are biased towards historically

privileged segments of the population. Several technology companies like Google,

Facebook, Twitter or Apple have included a department of ethics within their artifi-

cial intelligence department. In addition, language models based in the transformer

architecture such as BERT have been criticized. It has even been said that these lan-

guage models are nothing short of “glorified parrots”, since they are very e�ciently

trained to mimic the human language with impressive results. What is interesting
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about these arguments is that crowds tend to behave similarly when behind a social

media account. More often than not, persons tend to hide their true opinions in social

media outlets fearing they could be misunderstood or even “cancelled”. This begets

the question of whether language models are not simply a magnifying mirror in which

we can see our true reflection as society.

About the bias in ML algorithms, it is true that prediction models tend to behave

with prejudice sometimes. Take for instance the case of a recurrently misclassified

sample by both the WD-T and the TB-C. A woman in the 2017 dataset was constantly

wrongly categorized as a man. When her posts were analyzed more deeply it was

evident that the woman was a Canadian professional women’s soccer player. She

frequently posted about local and national women’s soccer teams. Neither model

(e.g., WD-T, TB-C) was able to properly identify that the woman was positively

talking about themes that as of now are not necessarily associated with men. We can

argue that models could be learning with certain bias, but certainly they can not be

accused of sexism. Currently Deep Learning networks are the SoA ML algorithms in

many application areas of society. They are great learners, but just like with a small

child, we must be careful with what we teach them, we could produce negatively

prejudiced predictors or incredible helpful assistants.

As already stated, author profiling remains an ongoing and relevant natural lan-

guage processing problem. The research to find better and more e�cient solutions

continues to grow. In this thesis, I believe the reader could find two novel and

sound proposals to successfully approach the very interesting author profiling co-

nundrum. Nonetheless, beyond the methodologies themselves, the author profiling

problem could also evolve. It would be very interesting to investigate the profiling

of certain segments of society. Instead of forecasting characteristics of individuals,

the Profiler network, or any ML algorithm for that matter, could predict particular

features of digital communities. The potential applications would be of great interest.

Imagine the possibility to anticipate violent uprisings, racist movements or any kind

of dangerous threat. Although that would be useful, one have to mind the potential

ethic implications.
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y Gómez, E. F. Morales, and J. Mart́ınez-Carranza, “Term-weighting learning
via genetic programming for text classification,” Know.-Based Syst., vol. 83,
pp. 176–189, July 2015.

[60] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learn-
ing based natural language processing [review article],” IEEE Computational
Intelligence Magazine, vol. 13, pp. 55–75, 08 2018.

[61] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in translation:
Contextualized word vectors,” in Advances in Neural Information Processing
Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, eds.), pp. 6294–6305, Curran Associates, Inc., 2017.

[62] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and R. Ward,
“Deep sentence embedding using long short-term memory networks: Analysis
and application to information retrieval,” IEEE/ACM Trans. Audio, Speech
and Lang. Proc., vol. 24, pp. 694–707, Apr. 2016.

[63] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “Towards universal para-
phrastic sentence embeddings,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Confer-
ence Track Proceedings, 2016.

[64] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the
2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pp. 4171–4186, 2019.

[65] S. Marsland, Machine Learning: An Algorithmic Perspective, Second Edition.
Chapman & Hall/CRC, 2nd ed., 2014.

[66] S. Liu, K. Lee, and I. Lee, “Document-level multi-topic sentiment classification
of email data with bilstm and data augmentation,” Knowledge-Based Systems,
vol. 197, p. 105918, 2020.

[67] V. Chow, “Predicting auction price of vehicle license plate with deep recurrent
neural network,” Expert Systems with Applications, vol. 142, p. 113008, 2020.



REFERENCES 132

[68] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 5998–6008,
Curran Associates, Inc., 2017.
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[101] R. Řeh̊uřek and P. Sojka, “Software Framework for Topic Modelling with Large
Corpora,” in Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks, (Valletta, Malta), pp. 45–50, ELRA, May 2010. http://is.
muni.cz/publication/884893/en.

[102] F. Rangel, P. Rosso, I. Chugur, M. Potthast, M. Trenkmann, B. Stein, B. Ver-
hoeven, and W. Daelemans, “Overview of the 2nd author profiling task at pan
2014,” in CLEF 2014 Labs and Workshops, Notebook Papers. CEUR Workshop
Proceedings, CEUR-WS.org (Sep 2014), 2014.

[103] L. R. Goldberg, “The development of markers for the big-five factor structure.,”
Psychological Assessment, vol. 4, no. 1, pp. 26–42, 1992.

[104] J. Pennebaker, The Secret Life of Pronouns: What Our Words Say About Us.
Bloomsbury USA, 2011.

[105] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and
S. Fidler, “Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books,” 2015.

[106] M. Franco-Salvador, N. Plotnikova, N. Pawar, and Y. Benajiba, “Subword-
based deep averaging networks for author profiling in social media.,” inWorking
Notes of CLEF 2017 - Conference and Labs of the Evaluation Forum, Dublin,
Ireland, September 11-14, 2017 (L. Cappellato, N. Ferro, L. Goeuriot, and
T. Mandl, eds.), vol. 1866 of CEUR Workshop Proceedings, CEUR-WS.org,
2017.

[107] D. Kodiyan, F. Hardegger, S. Neuhaus, and M. Cieliebak, “Author profiling
with bidirectional rnns using attention with grus,” in Working Notes of CLEF
2017 - Conference and Labs of the Evaluation Forum, Dublin, Ireland, Septem-
ber 11-14, 2017 (L. Cappellato, N. Ferro, L. Goeuriot, and T. Mandl, eds.),
vol. 1866 of CEUR Workshop Proceedings, CEUR-WS.org, 2017.

[108] N. Schaetti, “Unine at CLEF 2017: TF-IDF and deep-learning for author pro-
filing,” in Working Notes of CLEF 2017 - Conference and Labs of the Evalua-
tion Forum, Dublin, Ireland, September 11-14, 2017 (L. Cappellato, N. Ferro,
L. Goeuriot, and T. Mandl, eds.), vol. 1866 of CEUR Workshop Proceedings,
CEUR-WS.org, 2017.

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en


REFERENCES 136
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Gurrola, Graciela Ramı́rez-Alonso, Olanda Prieto-Ordaz, Richer Document
Embeddings for Author Profiling tasks based on a heuristic search,
Elsevier Information Processing & Management Journal. [86]. Indexed by the
Journal Citation Reports (Clarivate Analytics, 2019), Impact Factor: 4.787,
Q1, 2020, 102227, ISSN 0306-4573,
https://doi.org/10.1016/j.ipm.2020.102227.
(http://www.sciencedirect.com/science/article/pii/S0306457319306466)

A.1.2 Congress
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