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                                            GENERAL ABSTRACT 

MODELING AND GEOSPATIAL ANALYSIS OF DETERMINANTS OF 

ECOSYSTEM PRODUCTIVITY IN THE STATE OF CHIHUAHUA, MEXICO. 

BY: 

M. C. JESUS ALEJANDRO PRIETO AMPARAN 

The spatial modelling and analysis of natural resources is an increasingly 

urgent need. The results of geospatial modeling can contribute to a better 

understanding of the current, past and future state of natural resources. The 

objective of this work is to model and analyze five regions of the state of 

Chihuahua using geographic information systems, remote sensing data, field 

information, and geospatial data. The work consisted of five case studies. In the 

first study, grassland biomass was correlated with spectral data from the Landsat 

sensor. In the second study, scenarios of land use/land cover change in the forest 

region of San Juanito were generated. In the third study, a set of Rio Conchos 

basins were analyzed using multivariate techniques and the compound parameter 

to find those basins with greater susceptibility to erosion. In the fourth study, the 

productivity of the forests of the Chinatu Ejido was analyzed, as well as their 

spatial distribution. The fifth study combined interpolation techniques and 

multivariate analysis for a set of wells in the Delicias 005 irrigation district, where 

seven physicochemical parameters were analyzed, to determine their spatial 

distribution. The results of the five studies can contribute to the analysis of large 

areas of land and low cost, to know their current status to take priority actions to 

avoid their deterioration. 
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                                             RESUMEN GENERAL 

MODELACIÓN Y ANÁLISIS GEOESPACIAL DE FACTORES 

DETERMINANTES EN LA PRODUCTIVIDAD DE LOS ECOSISTEMAS, EN EL 

ESTADO DE CHIHUAHUA, MÉXICO 

POR: 

M. C. JESÚS ALEJANDRO PRIETO AMPARÁN 

Doctor en Philosophia de Recursos Naturales 

Secretaría de Investigación y Posgrado 

Facultad de Zootecnia y Ecología 

Universidad Autónoma de Chihuahua 

Presidente: Dr. Alfredo Pinedo Alvarez 

La modelación y análisis espacial de los recursos naturales es una 

necesidad cada vez más urgente. Los resultados de la modelación geoespacial 

pueden contribuir a una mejor comprensión del estado actual, pasado y futuro de 

los recursos naturales. El objetivo de este trabajo es modelar y analizar cinco 

regiones del estado de Chihuahua mediante sistemas de información geográfica, 

datos de sensores remotos, información de campo y datos geoespaciales. El 

trabajo consistió en cinco estudios de caso. En el primer estudio, se correlacionó 

biomasa de pastizales con datos espectrales del sensor Landsat. En el segundo 

estudio, se generaron escenarios de cambios en la cobertura de uso de suelo en 

la región forestal de San Juanito. En el tercer estudio, un conjunto de cuencas 

del Río Conchos fue analizadas mediante técnicas multivariadas y el parámetro 

compuesto para encontrar aquellas cuencas con mayor susceptibilidad a la 

erosión. En el cuarto estudio, se analizo la productividad de los bosques del Ejido 
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Chinatu, así como su distribución espacial. El quinto estudio combinó las técnicas 

de interpolación y el análisis multivariado para un conjunto de pozos en el Distrito 

de Riego de Delicias 005, donde siete parámetros fisicoquímicos se analizaron 

para conocer su distribución espacial. Los resultados de los cinco estudios 

pueden contribuir en el análisis de grandes superficies de terreno a bajo costo, 

para conocer su estado actual y emprender acciones prioritarias tendientes a 

evitar su deterioro. 
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                                      GENERAL INTRODUCTION 

Natural resources are being altered at an increasingly rapid rate by human 

activities, such as the combustion of fossil fuels, deforestation, the increase of the 

agricultural frontier over large pastures, the alteration of the water cycle, among 

others (Camacho-Olmedo et al., 2018). 

In this context, modelling and spatial analysis of the current state of the 

environmental system over time is today a great challenge. This research 

challenge has several fundamental aspects, including understanding the causes 

of environmental degradation and analyzing the drivers of change, such as 

degradation. This supports decision-making in natural resource management and 

spatial planning (Peagelow y Camacho-Olmedo, 2008). 

With the development of computational technologies, multiple computer 

models have been generated, which support large amounts of data. The 

processing power of these technologies has made it possible to analyze these 

data in less time. Currently, the most convenient way to manage and analyze this 

set of data is through geographic information systems (GIS). 

GIS offers the possibility of relating the location data of natural resources 

with their quantitative and qualitative descriptive characteristics. This offers an 

integral and geospatial vision of the information, which allows to improve the 

analytical techniques, including the statistics and the geostatistics (Bocco, 2004). 

Among these data, there are those derived from remote sensors, field information, 

geospatial information, among others, which have a territorial context. The 

combined use of specialized software and geospatial information has a far-
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reaching impact on the mapping, monitoring and management of natural 

resources on a sustainable basis (Reddy and Singh, 2018). 

The spatialization of the current state of natural resources in northern 

Mexico, especially the state of Chihuahua, makes it possible to detect the current 

problem of its resources. However, few studies have analyzed the distribution of 

natural resources in the State of Chihuahua (Manjarrez et al., 2015), some others 

have determined the distribution of the natural potential of some of their 

ecosystems (Martínez-Salvador et al., 2019) and a few others have modeled their 

possible behavior (Prieto-Ampáran et al., 2019). 

Therefore, the modeling and analysis of natural resources with a spatially 

explicit context is of great importance. Information on the nature, extent and 

spatial distribution of natural resources is a prerequisite for their mapping, 

monitoring and management on a sustainable basis. 

The objective of this research is to model and analyze five ecosystems of 

the state of Chihuahua, Mexico, through geospatial technologies to know their 

productivity and generate scenarios of possible behaviors. The specific objectives 

are: 1) the comparison of radiometric correction methods in the estimation of 

grassland biomass, 2) evaluate and simulate changes in forest cover in the forest 

region of the state of Chihuahua, 3) describe the behavior of 31 sub-basins, 

distributed in the Rio Conchos Basin, based on their geomorphometric 

parameters to find the sub-basins with greater susceptibility to erosion, 4) analyze 

the productivity of the Ejido Chinatu forest through a set of variables with spatial 

context and field data, using multivariate techniques, and 5) analyze eight 

physicochemical parameters in well water samples from the 005 Irrigation District 
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in Chihuahua, using multivariate techniques and interpolation methods to know 

its spatial distribution. 
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                                         LITERATURE REVIEW 

Grassland, forest, among others ecosystems play an important role as they 

provide a wide variety of environmental products and services for human well-

being (Yang et al., 2009; Weiskittel, Crookston and Radtke, 2011) such as soil 

retention (Borrelli et al., 2017), water yield (Sun et al., 2006), and are the habitat 

of many species of flora and fauna. 

However, these ecosystems have experienced notorious degradation in 

recent years, caused mainly by anthropogenic activities. In turn, these activities 

have modified the climate regime, prolonging droughts, fragmenting the habitat 

and reducing its border. The application of improper management practices has 

been one of the main causes of such degradation (Craine, 2013; Manjarrez et al., 

2015). 

In one hand, grasslands in northern Mexico are extensively used for cattle 

grazing and have also experienced intensive land-use change due to agricultural 

activities, which has resulted in changes of the species composition on such 

ecosystems (Estrada-Castillon et al., 2010; Manjarrez et al., 2016). In other hand, 

temperate forests of Mexico occupy 17 % of the national territory, represented by 

32 million hectares. In this region, the greatest association of pine and oak forests 

in the world occurs (González, 2012). Around 23 different species of pines and 

close to 200 species of oaks live in the ecoregion of Sierra Madre Occidental 

(Navar, 2009). However, 40 thousand hectares of forests get on average lost 

annually. This region has the highest deforestation rate in the world (Velázquez 

et al., 2002; Mas et al., 2004). 
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Accurate monitoring and evaluation of these ecosystems is critical for their 

conservation, and their restoration (He et al., 2005; Vazquez-Quintero et al., 

2016). Even though traditional methods such as field sampling, are costly, as well 

as time-and labor-consuming, when large pieces of land have to be covered (Xie 

et al., 2009). With the aim of developing more effective monitoring methods, there 

have been numerous studies on indirect methods that are very useful for 

analyzing the state of ecosystems, using remote sensing information (Goetz et 

al., 1999; Li et al., 2003; Zhao et al., 2016), models of land use/land cover changes 

(LULCC), commonly employed to quantify deforested surfaces, measuring the 

degree of change in the ecosystem (Lapola et al., 2011). Regression methods 

suchs as the logistic regression have been employed to generate models of 

LULCC. These models suppose that the relationship between the LULCC and the 

variables that produce it is a logistic function (Mas et al., 2010; Mas et al., 2014). 

Geostatistical-multivariate techniques allow us to study the spatial variability as 

well as the relationships that may exist among characteristics of the territory, with 

a special scale, wide distribution and low cost (Prieto-Amparán et al., 2018). 

Remote Sensing in the Analysis of Natural Resources 

The Landsat satellite has provided data since 1972 (Cohen and Goward, 

2004) with an extensive global coverage. This is an important resource for 

monitoring global environmental change (Woodcock et al., 2001; Hansen and 

Loveland 2012; Wulder et al., 2008).  

However, the satellites usually present a problem of saturation in the 

images, considered an important factor (Chander et al., 2009; Tan et al., 2012; 

Roy et al., 2016). This phenomenon of saturation is caused by atmospheric 
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dispersion and absorption, which has substantial variations with time, space, and 

wavelength. In addition, the surface reflectance is strongly affected by the 

elevation of the terrain, a more evident effect in mountainous environments 

(Körner et al., 2008). 

Different atmospheric and radiometric correction methods have been 

developed to transform the original values of the images into values of reflectance 

(Kaufman et al., 1997; Chavez, 1988; Janzen et al., 2006). Several of these 

techniques have been developed to estimate the amount of atmospheric bias from 

thin-surface terrestrial images by assessing the molecular and aerosol dispersion 

(Lyapustin et al., 2004; Richer et al., 2006). 

Modelling Changes in Forest Land Use Cover 

The study of the land use/land cover changes (LULCC) has become a 

fundamental research topic, since the change in land use/land cover (LULC) 

affects forest ecosystems and their biodiversity (Gharun et al., 2017).  

The spatial modeling is a technique contemplating alternative scenarios of 

LULCC, which could contribute to better explain the key processes influencing 

LULCC (Pijanowski et al., 2002; Eastman et al., 2005; Torrens, 2006; Perez-Vega 

et al., 2012). Thus, one of the main functions of the LULCC models is the 

establishment of scenarios, with the aim of changing policies and inadequate 

practices for the sustainable management of natural resources (DeFries et al., 

2007; Berberoğlu et al., 2016). 

Several approaches to establish LULCC scenarios have been developed 

and tested to generate scenarios of LULCC. Ferrerira et al. (2013) generated 

deforestation scenarios to 2050 in the central Brazilian savanna biome finding the 
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possible increase of 13.5 % in deforested areas. Galford et al. (2015) used 

Bayesian Weights of Evidence for policiy scenarios from 2010 a 2050 evaluating 

plans for agriculture and forest in Democratic Republic of Congo. 

Multivariate Techniques in the Spatial Analysis of Natural Resources 

Management of soil and water, implies the characterization of the 

ecosystems inside the watershed and the understanding of the relationships 

between uplands, lowlands, land use/land cover, geomorphic processes, slope, 

and soil (Chen et al., 2011; Rahaman et al., 2015). In watershed management, 

erosion control is one of the main components (Gajbhiye et al., 2015). Thus, the 

hydrological planning and monitoring of a watershed is important for the 

development of environmental policies (Sharma et al., 2014). 

The analysis of morphometry is often carried out based on geographic 

information systems (GIS, Shrimali et al., 2001; Thakker and Dhiman, 2007; 

Sharma et al., 2010; Viramontes-Olivas et al., 2008; Tilahun et al., 2014). On a 

spatial scale, morphometric parameters, i.e., the Gravelius compactness 

coefficient (Zavoianu, 1985) elongation ratio (Shumm, 1956), among others, are 

important, to know the hydrological configuration of watersheds. 

The relationships among these parameters are useful for developing 

hydrological models, which allow prioritizing watersheds based on their condition, 

such as erosion susceptibility. To determine the aforementioned relationships, 

statistical methods, such as multivariate techniques, have been widely used 

worldwide (Saha et al., 2012; Sharma et al., 2013). 

Within these multivariate techniques we find the princpal component 

analysis (PCA) and group analysis (GA) (Miranda et al., 1996; Castillo-Rodriguez 
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et al., 2010; Bateyneh and Zumlot, 2012; Oketola et al., 2013; Tritsch et al., 2016; 

Prieto-Amparán et al., 2019), as well as multivariate analysis of variance 

(MANOVA) and the ranking methodology known as compound parameter (Cp) 

(Altaf et al., 2014) which have been widely used in recent years for the analysis 

of environmental data from watersheds. These techniques assist with analyzing 

the spatial variability of watersheds, their structure, as well as the relationships 

existing among them. 

Interpolation and Multivariate Analysis on Water Quality 

Water quality is an important factor that affects human health and 

ecological systems (Qadir et al., 2008). In the rural context, groundwater is the 

support of agricultural irrigation and it is essential for providing additional food 

security resources (Morris et al., 2003). However, food security can be affected 

by pollutants present in the irrigation water, causing serious clinical and 

physiological problems to humans when such pollutants get accumulated in large 

amounts (Sharma et al., 2007; Khan et al., 2008).  

The evaluation of water quality in most countries has become a critical 

issue in recent years (Varol and Davraz, 2015). Water quality is subject to 

constant changes due to seasonal and climatic factors (AlSuhaimi et al., 2017). 

Likewise, spatial variations emphasize the need for water monitoring that provides 

a representative and reliable estimate (Muangthong and Shrestha, 2015).  

Multivariate techniques and exploratory data analyses are appropriate for 

the synthesis of data and its interpretation (Singh et al., 2005). Classification, 

modeling and interpretation of the monitored data are the most important steps in 
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the evaluation of water quality (Boyacioglu, 2006; Zhao et al., 2007; Brogna et al., 

2017). 

The spatial variations emphasize the need for water monitoring that 

provides a representative and reliable estimate (Muangthong and Shrestha, 

2015). Recently, several approaches have been used in for water quality analysis. 

Multivariate techniques such as PCA and GA could be used for analyzing big 

water quality databases without losing important information (Helena et al., 2000; 

Singh et al., 2005; Wang et al., 2013). 

Furthermore, interpolation methods have been employed to map the 

spatial distribution of soil properties (Villatoro et al., 2008; Bhunia et al., 2011), 

heavy metals (Xie et al., 2011; Yan et al., 2015), population characteristics 

(Navarrete, 2012), precipitation (Wang et al., 2014; Núñez et al., 2014), among 

others. Data interpolation offers the advantage of projecting maps or continuous 

surfaces from discrete data (Johnston et al., 2001). Therefore, spatial 

interpolation techniques are essential to create a continuous (or predictable) 

surface from values of sampled points (Wang et al., 2014). 

Interpolation is an efficient method to study the spatial allocation of 

elements, their inconsistency, reduce the error variance and execution costs 

(Behera and Shukla, 2015). The interpolation methods are useful for identifying 

contamination sources, assessing pollution trends and risks (Markus and 

McBratney, 2001; Rawlins et al., 2006). 
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                                                     ABSTRACT 

ATMOSPHERIC AND RADIOMETRIC CORRECTION ALGORITHMS FOR THE 

MULTITEMPORAL ASSESSMENT OF GRASSLANDS PRODUCTIVITY 

BY:  

M.C. JESUS ALEJANDRO PRIETO AMPARAN 

A key step in the processing of satellite imagery is the radiometric 

correction of images to account for reflectance that water vapor, atmospheric dust, 

and other atmospheric elements add to the images, causing imprecisions in 

variables of interest estimated at the earth’s surface level. That issue is important 

when performing spatiotemporal analyses to determine ecosystems’ productivity. 

In this study, three correction methods were applied to satellite images for the 

period 2010–2014. These methods were Atmospheric Correction for Flat Terrain 

2 (ATCOR2), Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH), and Dark Object Substract 1 (DOS1). The images included 12 sub-

scenes from the Landsat Thematic Mapper (TM), Landsat Enhanced Thematic 

Mapper Plus (ETM+) y Landsat Operational Land Imager (OLI) sensors. The 

images corresponded to three Permanent Monitoring Sites (PMS) of grasslands, 

‘Teseachi’, ‘Eden’, and ‘El Sitio’, located in the state of Chihuahua, Mexico. After 

applying the corrections to the images, they were correlated with the biomass 

information and subsequently evaluated in terms of their accuracy for biomass 

estimation. For that, biomass production was measured during the study period 

at the three PMS to calibrate production models developed with simple and 

multiple linear regression (SLR and MLR) techniques. When the estimations were 

made with MLR, DOS1 obtained an R2 of 0.97 (P<0.05) for 2012 and values 
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greater than 0.70 (P<0.05) during 2013–2014. The rest of the algorithms did not 

show significant results and DOS1, which is the simplest algorithm, resulted in the 

best biomass estimator. Thus, in the multitemporal analysis of grassland based 

on spectral information, it is not necessary to apply complex correction 

procedures. The maps of biomass production, elaborated from images corrected 

with DOS1, can be used as a reference point for the assessment of the grassland 

condition, as well as to determine the grazing capacity and thus the potential 

animal production in such ecosystems. 

Key words: Landsat; ATCOR2; DOS1; FLAASH: spatio temporal 
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                                                      RESUMEN 

ATMOSPHERIC AND RADIOMETRIC CORRECTION ALGORITHMS FOR THE 

MULTITEMPORAL ASSESSMENT OF GRASSLANDS PRODUCTIVITY 

POR: 

M. C. JESÚS ALEJANDRO PRIETO AMPARÁN 

Doctor en Philosophia de Recursos Naturales 

Secretaría de Investigación y Posgrado 

Facultad de Zootecnia y Ecología 

Universidad Autónoma de Chihuahua 

Presidente: Dr. Alfredo Pinedo Alvarez 

Un paso clave en el procesamiento de imágenes satelitales es la 

corrección radiométrica, la cual ayuda a cuantificar la reflectancia del vapor de 

agua, el polvo atmosférico y otros elementos atmosféricos encontrados en las 

imágenes, causando imprecisiones en las variables de interés estimadas a nivel 

de la superficie terrestre. Esta cuestión es importante cuando se desea realizar 

análisis espacio-temporales para determinar la productividad de los ecosistemas. 

En este estudio, se aplicaron tres métodos de corrección a las imágenes de 

satélite para el período 2010-2014. Estos métodos fueron Atmospheric Correction 

for Flat Terrain 2 (ATCOR2), Fast Line-of-Sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH), y Dark Object Substract 1 (DOS1). Las imágenes incluían 

12 subescenas de los sensores Landsat Thematic Mapper (TM), Landsat 

Enhanced Thematic Mapper Plus (ETM+) y Landsat Operational Land Imager 

(OLI). Las imágenes corresponden a tres Sitios Permanentes de Monitoreo de 

pastizales (SPMP), ‘Teseachi’, ‘Eden’, y ‘El Sitio’, ubicados en el estado de 
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Chihuahua, México. Después de aplicar las correcciones a las imágenes, éstas 

fueron correlacionadas con la información de la biomasa y posteriormente 

evaluadas en términos de su precisión para la estimación de biomasa. Para ello, 

se midió la producción de biomasa durante el periodo de estudio en los tres PMS 

para desarrollar los modelos de producción desarrollados con técnicas de 

regresión lineal simple y múltiple (RLS y RLM). Cuando se hicieron las 

estimaciones con RLM, el modelo DOS1 obtuvo un R2 de 0.97 (P<0,05) para 

2012 y valores superiores a 0.70 (P<0,05) durante 2013-2014. El resto de los 

algoritmos no mostraron resultados significativos y DOS1, que es el algoritmo 

más simple, resultó en el mejor estimador de biomasa. Por lo tanto, en el análisis 

multitemporal de los pastizales basado en información espectral, no es necesario 

aplicar procedimientos de corrección complejos. Los mapas de producción de 

biomasa, elaborados a partir de imágenes corregidas con DOS1, pueden 

utilizarse como punto de referencia para la evaluación del estado de los 

pastizales, así como para determinar la capacidad de pastoreo y, por tanto, la 

producción animal potencial en dichos ecosistemas. 

Palabras clave: Landsat; ATCOR2; DOS1; FLAASH; espacio-temporal. 
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                                              INTRODUCTION 

Grassland ecosystems play an important role in biodiversity conservation, 

ecosystem services provision, and the global carbon cycle (Yang et al., 2009). 

They also play a key role in biogeochemical cycles and the exchange of energy 

(Jin et al., 2009). However, grasslands have experienced a notorious degradation 

in recent years due to long droughts, climate variability, fragmentation and 

anthropic intervention. The application of improper management practices has 

been one of the main causes of such degradation (Craine, 2013; Manjarrez et al., 

2015). Specifically, grasslands in northern Mexico are extensively used for cattle 

grazing and have also experienced intensive land-use change due to agricultural 

activities, which has resulted in changes of the species composition on such 

ecosystems (Estrada-Castillon et al., 2010; Manjarrez et al., 2016). 

Accurate monitoring and evaluation of grasslands’ conditions is critical for 

their conservation and, in some cases, their restoration (He et al., 2005). In the 

past decades, biomass inventory of grasslands has been driven by traditional 

methods of evaluation, which include extensive field sampling (Fan et al., 2007; 

Ruppert et al., 2014). Even though these methods are accurate, they are costly, 

as well as time-and labor-consuming, when large pieces of land have to be 

covered (Xie et al., 2009). With the aim of developing more effective monitoring 

methods, there have been numerous studies on indirect methods to estimate the 

biomass of grasslands using remote sensing information (Goetz et al., 1999; Li et 

al., 2003; Zhao et al., 2016). In this endeavor, optical sensors, radar, and Lidar 

systems have been used (Naesset et al., 2013). In general, all these studies have 
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sought to find relationships between grassland structural variables and satellite 

image spectral data (Schino et al., 2003). 

For instance, Marsett et al. (2006) used image-processing algorithms to 

quantify the total cover, height, and biomass of grasslands. Comparisons of 

remote sensor estimates with independent field measurements yielded values of 

R2 = 0.80, 0.85, and 0.77 and Nash Sutcliffe coefficient values of 0.78, 0.70, and 

0.77 for coverage, plant height, and biomass, respectively. Dusseux et al. (2015) 

correlated spectral data from the Satellite Pour l’Observation de la Terre (SPOT) 

sensor converted to indices, such as the leaf area index, the Normalized 

Difference Vegetation Index, and the vegetation cover fraction, with data of 

biomass measured in the field. The coefficients of determination found were R2 = 

0.68, 0.30, and 0.50. These studies demonstrated the good relationships between 

the spectral information from the remote sensors and the biomass inventories in 

the field. Rodríguez-Maturino et al. (2017) correlated 3-year data from Landsat 

TM5 as well as field measurements of coverage of grass canopy and grass height, 

obtaining values of R2 greater than 0.70. 

The Landsat satellite has provided data since 1972 (Cohen and Goward, 

2004) with an extensive global coverage. This is an important resource for 

monitoring global environmental change (Woodcock et al., 2001; Hansen and 

Loveland 2012; Wulder et al., 2008). However, the problem of saturation of data 

in the images is considered an important factor affecting the results when 

estimating the biomass of vegetation (Chander et al., 2009; Tan et al., 2012; Roy 

et al., 2016). This phenomenon of saturation is caused by atmospheric dispersion 

and absorption, which has substantial variations with time, space, and 
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wavelength. In addition, the surface reflectance is strongly affected by the 

elevation of the terrain, a more evident effect in mountainous environments 

(Körner et al., 2008). All of these factors determine the importance of atmospheric 

correction to attenuate the effects of noise occurring in the capture of satellite 

images (Zelazowski and Sayer, 2011; Pons et al., 2014), especially when 

multitemporal studies are carried out (Pinedo-Alvarez et al., 2007; Prieto-

Amparán et al., 2016; Vazquez-Quintero et al., 2016). 

Different atmospheric and radiometric correction methods have been 

developed to transform the original values of the images into values of reflectance 

(Chavez, 1988; Kaufman et al., 1997; Janzen et al., 2006). Several of these 

techniques have been developed to estimate the amount of atmospheric bias from 

thin-surface terrestrial images by assessing the molecular and aerosol dispersion 

(Lyapustin et al., 2004; Richer et al., 2006). For instance, the algorithm called Fast 

Line of sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) serves to 

derive surface and atmospheric reflectance properties using a MODTRAN 

accuracy model developed by Spectral Science Inc., Burlington, MA. U.S. (Kruse 

et al., 2004), which explains the effects of adjacency associated with the 

dispersion of the atmosphere. The method of Atmospheric Correction for Flat 

Terrain 2 (ATCOR2) removes the brightness of the image, as well as the possible 

effects of fog or clouds, to obtain the values of the terrestrial surface (Neubert y 

Meinel, 2005). The method of Dark Object Substract 1 (DOS1) is based on the 

properties of the image and is the algorithm most widely used for the detection of 

land-use changes (Paolini et al., 2006; Cui et al., 2014). 
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There have been some studies on the comparison of different approaches 

to correct the atmospheric effects. In this regard, El Hajj et al. (2008) compared 

relative radiometric normalization and a 6S algorithm employing SPOT5 data. 

Chang et al. (2008) evaluated the correction methods TOA, GDOS, and AC 

performed on Landsat images. Calliceco and Dell’Acqua (2011) compared the 

algorithms 6S and MODTRAN. Agrawal et al. (2011) compared the FLAASH and 

QUAC algorithms. Nazer et al. (2014) compared five atmospheric correction 

algorithms, 6S, FLAASH, ATCOR, DOS, and ELM, over sand, turf, grass, and 

water surfaces. López-Serrano et al. (2016) evaluated the performance of the 

COST, ATCOR2, FLAASH, 6S, and TOA algorithms for the estimation of forest 

above-ground biomass. Martins et al. (2017) compared the 6S, ACOLITE, and 

Sen2Cor methods applied to the new platform Sentinel 2-MSI. However, these 

studies lack the multitemporal component and only a few studies (Vicente-

Serrano et al., 2008; Nguyen et al., 2015; Raab et al., 2015) have been developed 

to compare the methods of radiometric correction on different dates. 

Based on the aforementioned, most of the studies are not multitemporal; 

they neither compare correction methods at different dates nor determine the 

grasslands biomass productivity in semi-arid regions. The objective of this study 

was to compare three correction methods based on their precision for the 

estimation of grassland biomass on the semi-arid ecosystems of Chihuahua, 

Mexico. Two atmospheric (ATCOR2, FLAASH) correction methods and one 

radiometric (DOS1) correction method were evaluated. The results may serve 

grassland owners for decision-making on animal load adjustments. Likewise, 

government institutions and non-governmental organizations working in areas 
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such as forestry, agriculture, livestock research, and rural development could use 

this information for planning, decision–making, and the development of public 

policies. 
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                                       MATERIAL AND METHODS 

Location of the Study Area 

The study included three Permanent Monitoring Sites (PMS), which belong 

to the National Livestock Oriented Land Monitoring System. The first PMS is 

called ‘Teseachi’, located at the central coordinates 28°53′35″ (N), 107°26′49″ 

(W); the second PMS, called ‘El Sitio’, is located at 27°35′17″ (N), 106°16′30″ (W); 

the third PMS, called ‘Eden’, is located at 27°06′50″ (N) and 105°26′46″ (W) 

(Figure 1). Each PMS is composed of nine monitoring stations, where biomass 

sampling was carried out once a year. The three PMS are located in the semi-arid 

region of Chihuahua, where the vegetation is dominated by grasses. Besides the 

grasslands, this region also houses chaparral vegetation and dunes (CONABIO, 

2014). Grasslands provide habitat for wildlife, serve as reservoirs of carbon, and 

help mitigate global environmental change impacts (Jurado et al., 2013). In these 

ecosystems, it is possible to find mammals, such as Bison bison and Cynomys 

ludovicanus, which have multiple effects on grasslands, and both of them are 

considered key in maintaining grassland habitats (Samson et al., 2004). In 

addition, mammals such as Puma concolor can also be found, which is in a 

decreasing status based on the International Union for Conservation of Nature 

(IUCN) red list (IUCN, 2016).  

Biomass Sampling 

The data on biomass employed for this study comes from values registered 

on the field during the period 2010–2014. During the first year of sampling, the 

sites were plenty identified. The center site and the corner boundaries were 

marked with flags. These points got recorded with a global positioning system  
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Figure 1. Location of the three permanent monitoring sites. The pictures depict 
representative biomass features of the sites. (a) Teseachi; (b) El Sitio; 
(c) Eden. 
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(GPS) to ensure that the biomass sampling was performed at the same locations 

during all of the years studied. The biomass was sampled during the month of 

October. During this period, the maximum peak of biomass is achieved and the 

vegetation offers a strong reflectance (Ni, 2004). 

The sampling design for the biomass collection in each PMS was based on 

the shape and size of a pixel of a satellite image. The PMS is a quadrangular area 

of 225 ha (1.5 km × 1.5 km). In its interior, the PMS includes nine sampling 

stations of 1.0 ha each (100 m × 100 m). The centers of the sampling stations 

were located 200 m apart. The sampling stations consisted of a cross, which was 

marked from North to South and East to West. The cross served to locate its four 

corresponding quadrants. Within each quadrant, a circled area of 1.6 m of 

diameter was randomly marked. The circles were built with heat-resistant, orange 

color, plastic tubes of 0.02 m diameter, which are commonly employed for 

electrical wire protection. The biomass inside the quadrants was cut with sizers 

and placed in paper bags. The bags were tagged to clearly identify the sites where 

the biomass came from. The bags were then oven dried for 48 h at 70 °C and the 

database was built with the values of these dry weights (Kg×ha−1). 

A detailed description of the field sampling design and data collection 

protocol can be found in (CGG-SAGARPA-COLPOS, 2009). 

Satellite Data 

A total of 12 images, including scenes taken by the Landsat Thematic 

Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM+), and the 

Operational Land Imager (OLI), available at the United States Geological Survey 

(USGS, 2016), were used. The scenes had a spatial resolution of 30 m × 30 m 
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and correspond to the period of 2010–2014 (Table 1). The sensors operate with 

several bands filtered from the electromagnetic spectrum. The Landsat TM and 

ETM+ are equipped with band 1 (0.45–0.52 μm), band 2 (0.52–0.60 μm), band 3 

(0.63–0.69 μm), band 4 (0.76–0.90 μm), band 5 (1.55–1.75 μm), and band 7 

(2.08–2.35 μm). Likewise, the OLI is equipped with band 2 (0.45–0.51 μm), band 

3 (0.53–0.59 μm), band 4 (0.64–0.67 μm), band 5 (0.85–0.88 μm), band 6 (1.57–

1.65 μm), and band 7 (2.11–2.29 μm) (Barsi et al., 1998). 

Correction Methods 

The correction methods (CMs) used to eliminate the noise in the satellite 

images were: ATCOR2, FLAASH, and DOS1. The ATCOR2 method removes the 

brightness of the image, as well as the possible effects of fog or clouds, to obtain 

the values of the terrestrial surface (Neubert y Meinel, 2005). It also uses 

predetermined sensor calibration values as well as solar angles to obtain 

reflectance values (Janzen et al., 2006). This method is based on the MODerate 

resolution atmospheric TRANsmission (MODTRAN) radioactive transfer model 

(Berk et al., 1998). The main characteristics of ATCOR2 are: a pre-classification 

of the scene (soil, water, fog, and clouds), recovery of atmospheric parameters 

(aerosol optical thickness, water vapor) and surface reflectance recovery 

(Marcello et al., 2016). The surface reflectance (𝜌𝑆𝑈𝑃) is obtained by Equation (1).  

𝜌𝑆𝑈𝑃 =
1

𝑎1
(

𝑑2 𝜋 𝐿𝑇𝑂𝐴

𝐸𝑇𝑂𝐴 𝑐𝑜𝑠𝜃𝑖
− 𝑎0) (1) 

where: d is the direct distance to the sun, LTOA is the spectral radiance of the 

satellite, ETOA is the solar spectral radiance on a surface perpendicular to the 

rays of the sun outside the atmosphere, and θi is the solar zenith angle. To obtain  
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Table 1. Characteristics of Landsat Thematic Mapper (TM), Landsat Enhanced 
Thematic Mapper Plus (ETM+), and Landsat Operational Land Imager 
(OLI) scenes used in the study. 

PMS Scene ID Date of Image Sensor Path/Row 

Eden 

LT50310412010279EDC00 6 October 2010 

TM 

31/41 

LT50310412011298EDC00 25 October 2011 

LC80310412013319LGN00 15 November 2013 
OLI 

LC80310412014274LGN00 1 October 2014 

El Sitio 

LT50320412010302EDC00 29 October 2010 

TM 

ETM+ 

32/41 

LT50320412011305EDC00 1 November 20111 

LE70320412012028EDC00 28 October 2012 

LC80320412013278LGN00 5 October 2013 

OLI 
LC80320412014281LGN00 8 October 2014 

Teseachi 

LT50330402010309EDC00 5 November 2010 

TM 

ETM+ 

33/40 

LT50330402011296EDC00 23 October 2011 

LE70330402012339EDC00 4 December 2012 

LC80330402013285LGN00 12 October 2013 
OLI 

LC80330402014288LGN00 15 October 2014 

 

PMS=Permanent monitoring sites. 
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the coefficients a0 and a1, the standard atmospheric parameters (aerosol type, 

visibility or optical thickness, and water vapor column) are required. Such 

parameters are available in the Software ERDAS© (v.2014). For this study, the 

solar model used was rural with a scene visibility of 40 km. In addition, the 

parameter of tropical_rural was chosen based on the dates the scenes were 

taken. 

The mean reflectance of the studied area �̅�𝑆𝑈𝑃𝑖
 is calculated to correct for 

the adjacency effect. Therefore, Equation (2) describes the relation to obtain the 

reflectance of the free surface of the adjacency effect. 

𝜌′𝑆𝑈𝑃 = 𝜌𝑆𝑈𝑃 + (∫
𝜏0𝑑𝑖𝑓

𝜏0𝑑𝑖𝑟

λ2

λ

𝑅𝑑𝜆) (𝜌𝑆𝑈𝑃 − ∑ �̅�𝑆𝑈𝑃𝑖

𝑛𝑅

𝑖=1

𝑤𝑖) (2) 

where: 𝜏0𝑑𝑖𝑓  and 𝜏0𝑑𝑖𝑟  are the diffuse and direct transmittance, respectively, R is 

the sensor-specific spectral response curve, and 𝑤𝑖 defines the weighting 

coefficients as a function of the distance-dependence. The atmospheric correction 

was carried out with the ATCOR2 module of the software ERDAS© (v.2014). 

The FLAASH algorithm is also based on the MODTRAN radiative transfer 

model (Alder-Golden et al., 1998; Anderson et al., 2002). It is designed to 

eliminate the atmospheric effects caused by the molecular dispersion of particles 

in the atmosphere. It is determined by Equation (3). 

𝐿𝑇𝑂𝐴 = (
𝐴𝜌𝑆𝑈𝑃

1 − 𝜌𝑒𝑆
) (

𝐵𝜌𝑒

1 − 𝜌𝑒𝑆
) + 𝐿𝑜 (3) 

where: 𝐿𝑇𝑂𝐴 is the spectral radiance reached by the satellite, 𝜌𝑆𝑈𝑃 is the 

reflectance of the pixel surface, 𝜌e is the reflectance of the average surface of the 

pixel of the surrounding region, S is the spherical albedo of the atmosphere, 𝐿𝑜 is 
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the radiance backscattered by the atmosphere, and A as well as B are coefficients 

that depend on the atmosphere and geometric conditions. 

The first term of the equation corresponds to the reflectance of the surface 

that travels directly into the sensor while the second term corresponds to the 

luminosity of the surface that is dispersed by the environment. The distinction 

between 𝜌𝑆𝑈𝑃 and 𝜌𝑒 explains the “adjacency effect” (spatial blending of radiation 

between nearby pixels) caused by the atmospheric dispersion. The values of A, B, 

S, and 𝐿𝑜 can be determined empirically from the MODTRAN4 standards. The vision 

and the solar angles of the measurement and the nominal values for the surface 

elevation, aerosol shape, and visible range of the scene must be specified (Marcello 

et al., 2016). For this study, the standard model used was tropical, which is 

recommended for locations with Latitudes around 30° when the scenes are taken in 

September–October. The terrain elevation values used were 1818.13, 1450.5, and 

2114.5 meters above the sea level for El Sitio, Eden, and Teseachi, respectively. In 

addition, the aerosol type was chosen as rural with a scene visibility of 40 km, 

corresponding to zones with clean weather conditions, as this is the case for the three 

sites analyzed in this study. This correction method was carried out with the FLAASH 

module of the software ENVI© (v.5.1). 

The DOS1 method is based on the properties of the image. This correction 

method is the most widely used for the detection of land-use changes. Elements 

such as water, forests, and shadows are considered as dark objects when their 

values of reflectance are close to zero. Dark objects are detected automatically 

when the pixel reflectance value is less than or equal to 1.0 %. The assumption 

is that some pixels within the image receive 0 % of the solar radiation (100 % of 
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shade), mainly due to the effect of topography, and the value of radiances 

corresponding to these pixels registered by the satellite correspond to 

atmospheric dispersion (Chavez, 1988). If a dark object is found in the image, the 

minimum reflectance value in the histogram is assigned to such an object. From 

this minimum, it is possible to correct the entire scene by the effects of the 

atmospheric dispersion (Paolini et al., 2006; Cui et al., 2014). To obtain the 

surface reflectance, Equation (4) is used. 

𝜌𝑆𝑈𝑃 =
𝑑2 𝜋 (𝐿𝑇𝑂𝐴 −  𝐿0)

𝐸𝑇𝑂𝐴 𝑐𝑜𝑠𝜃𝑖
 (4) 

where: d is the direct distance to the sun, 𝐿𝑇𝑂𝐴 is the spectral radiance to the 

satellite, 𝐿0 is the backscatter glow through the atmosphere, 𝐸𝑇𝑂𝐴 is the solar 

spectral radiance on a surface perpendicular to the sun’s rays outside the 

atmosphere, and θi is the solar zenith angle. The radiometric correction was 

carried out with the Semi-Automatic Classification plugin developed by Congedo 

(Congedo, 2013) and included in the software QGis (v.2.18). 

Accuracy of the Correction Methods 

A visual analysis of false color compositions was performed to compare 

the correction methods (CMs). Statistical analyses included an ANOVA and a 

means comparison of the spectral signatures per band, carried out in the software 

SAS© (v.9.1.3). In addition, a simple linear regression (SLR) analysis was carried 

out between the values of each CMs, separately per band, and the biomass. 

Moreover, a multivariate principal component analysis (PCA) was performed. The 

components that explained at least 80 % of the total variability of the reflectance 

values of each CMs were selected. The accuracy of the CMs was determined by 
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SLR when only one main component was selected and by multiple linear 

regression (MLR) in the cases when two or more components were selected. In 

any case, the coefficient of determination (R2) and the root mean square error 

(RMSE) were quantified to find the CMs that best fitted the data of each year and 

each sampling site analyzed. Likewise, the P-value served to determine the 

reliability of the CMs to estimate the biomass. A flow diagram explaining the 

methodology followed in this study is represented in Figure 2. 
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Figure 2. Flow diagram representing the procedure followed for the analysis. CM: 
correction method; SLR: simple linear regression; MLR: multiple linear 
regression; PC: principal component; RMSE: root mean square error. 
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                                        RESULTS AND DISCUSION 

Composition of Radiometrically Corrected Images 

In a first analysis, the radiometrically corrected false-color images for Eden 

(years 2010, 2011, 2013, and 2014), as well as El Sitio and Teseachi (years 2010, 

2011, 2012, 2013, and 2014), as is shown in Figures 3–5, were visually compared. 

The correction methods were configured using the parameter of rural zone, which 

is a pre-calibrated value for zones not affected by urban zones or industrial 

activities (Marcello et al., 2016). 

Comparative Analysis of the Correction Methods 

The reflectance means from the three PMS, obtained after applying the 

CMs for the period 2010–2014, were compared (Figures 6–8). The differences 

among the CMs in general varied. The spectral signature of the grassland showed 

low reflectance values for the bands blue, green, and red during the studied 

period. Conversely, high values of reflectance were obtained by the bands 

corresponding to the Near Infra-Red (NIR) and Shortwave Infra-Red (SWIR) 

regions for the three PMS. That was possibly due to a strong chlorophyll 

absorption. 

The DOS1 and ATCOR2 methods presented higher values of surface 

reflectance than the FLAASH method in the visible region for most of the years. 

This situation may have been induced due to the configuration of DOS1 and 

ATCOR2, which ignore the effects of atmospheric dispersion on the spectral 

signatures. In particular, DOS1 does not have the capability to simulate the 

atmospheric absorption and produces a decrement of surface reflectance (Lu et 

al., 2002).  
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Figure 3. False-color images from the different radiometric correction algorithms. 
Site: Eden. 
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Figure 4. False-color images from the different radiometric correction algorithms. 
Site: El Sitio. 
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Figure 5. False-color images from the different radiometric correction algorithms. 
Site: Teseachi. 
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Figure 6. Spectral response of each correction method in Eden for 2010 a); 2011 
(b); 2012 (c); 2013 (d); 2014 (e). ATCOR2 (—), DOS1 (—) and FLAASH 
(—). 
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Figure 7. Spectral response of each correction method in El Sitio for 2010 a); 
2011 (b); 2012 (c); 2013 (d); 2014 (e). ATCOR2 (—), DOS1 (—) and 
FLAASH (—). 
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Figure 8. Spectral response of each correction method in Teseachi for 2010 a); 
2011 (b); 2012 (c); 2013 (d); 2014 (e). ATCOR2 (—), DOS1 (—) and 
FLAASH (—). 
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These dissimilarities are also due to some combinations of adjustments in 

the radiometric calibration (Manakos et al., 2011). Furthermore, it could also be 

due to the effects caused by the heterogeneity of the sites and the grassland itself. 

The ANOVA applied to the data from the three PMS determined that there 

were significant differences (P<0.05) for all of the CMs in the visible region of the 

spectrum. The NIR showed a greater number of non-significant results for the 

three sites. In the case of Eden, all of the CMs showed significant differences for 

all of the bands, except for the SWIR 1 in 2011 (ATCOR2 and DOS1) and the red 

region in 2013 (DOS1 and FLAASH). Similarly, significant differences were also 

detected for El Sitio, with the exception of the NIR with the ATCOR2 method in 

2010. Another two exceptions were the SWIR 1 in 2010 (ATCOR2) and the red 

region in 2013 (ATCOR2). Finally, the ANOVA detected significant differences for 

Teseachi; however, this site showed the greatest number of non-significant 

results. 

Estimated Annual Biomass 

Table 2 shows the accuracy of the biomass estimation during 2010–2014 

when applying the CMs to the scenes of each PMS. Variability on the values of 

R2 are observed among all the years and CMs. The contribution of the spectral 

bands to each SLR model was calculated. The results showed that, in Eden, the 

bands were not good biomass estimators (P>0.05) when used separately. For El 

Sitio, the results showed significant values of R2 (P<0.05) for the NIR in 2014 for 

the three CMs. In Teseachi, a larger number of significant values of R2 (P<0.05)  
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Table 2. Accuracy of the correction methods in the three permanent monitoring sites 

(PMS). The column of Band (spectrum region) corresponds to the spectral 

bands and the corresponding spectrum region that contributed the most for the 

biomass estimation. 

No Site CA Year Band (Spectrum Region) R2 RMSE (Kg·ha−1) 

1 

Eden 

ATCOR2 

2010 1 (Blue) 0.35 72.01 

2 2011 1 (Blue) 0.22 23.92 

3 2012 n/d n/d n/d 

4 2013 2 (Blue) 0.38 153.31 

5 2014 6 (SWIR1) 0.05 321.27 

6 

DOS1 

2010 2 (Green) 0.02 88.36 

7 2011 1 (Blue) 0.12 25.42 

8 2012 n/d n/d n/d 

9 2013 5 (NIR) 0.19 174.70 

10 2014 5 (NIR) 0.48 * 237.99 

11 

FLAASH 

2010 1 (Blue) 0.19 80.11 

12 2011 1 (Blue) 0.20 24.22 

13 2012 n/d n/d n/d 

14 2013 2 (Blue) 0.31 161.73 

15 2014 7 (SWIR2) 0.04 323.04 

1 

El Sitio 

ATCOR2 

2010 1 (Blue) 0.08 98.32 

2 2011 1 (Blue) 0.09 54.14 

3 2012 2 (Green) 0.07 54.14 

4 2013 2 (Blue) 0.40 34.43 

5 2014 5 (NIR) 0.81 * 84.16 

6 

DOS1 

2010 5 (SWIR1) 0.10 97.21 

7 2011 7 (SWIR2) 0.26 302.29 

8 2012 2 (Green) 0.07 59.06 

9 2013 5 (NIR) 0.46 * 32.54 
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10 2014 5 (NIR) 0.81 * 84.16 

11 

FLAASH 

2010 1 (Blue) 0.02 101.54 

12 2011 1 (Blue) 0.27 29.10 

13 2012 2 (Green) 0.08 58.94 

14 2013 5 (NIR) 0.67 * 26.24 

15 2014 5 (NIR) 0.79 * 86.66 

1 

Teseachi 

ATCOR2 

2010 5 (SWIR1) 0.26 82.58 

2 2011 3 (Red) 0.40 52.92 

3 2012 5 (SWIR1) 0.42 70.76 

4 2013 7 (SWIR2) 0.76 * 48.79 

5 2014 5 (NIR) 0.57 * 40.90 

6 

DOS1 

2010 7 (SWIR2) 0.44 * 71.42 

7 2011 3 (Red) 0.40 52.93 

8 2012 7 (SWIR2) 0.72 * 48.65 

9 2013 7 (SWIR2) 0.76 * 48.79 

10 2014 5 (NIR) 0.42 * 40.90 

11 

FLAASH 

2010 7 (SWIR2) 0.44 * 71.44 

12 2011 3 (Red) 0.40 53.00 

13 2012 7 (SWIR2) 0.72 * 60.76 

14 2013 7 (SWIR2) 0.76 * 77.97 

15 2014 6 (SWIR1) 0.57 * 40.61 

 

* = Significant level (P<0.05). 
n/d = No data. 
CA = Correction algorithm.  
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were observed for the red region, NIR, and SWIR 2. Finally, in Teseachi, the NIR 

and SWIR are the most relevant spectral regions for the prediction of biomass. 

The results obtained could be related to the specific atmospheric 

parameters included as inputs in each of the models. The DOS1 method does not 

refer to the atmospheric profile (Chavez et al., 1996) and FLAASH uses global 

values for its atmospheric parameters (Mattew et al., 2000). Figures 9 and 10 

show the variations of the values of R2 and RMSE obtained by the SLR analysis. 

The RMSE fluctuated in the three CMs, being DOS1 the one with the most stable 

and the lowest values. 

The results of the PC analysis for biomass estimation in the three PMS are 

shown in Table 3. Two main components were considered for the PCA, which 

represented at least 80 % of the total data set variance. The analysis of the 

principal components served to group the spectral variance and to establish its 

relation to biomass production. Thus, each resulting component represents a 

reduced percentage of variability. 

In the site Eden, the highest values of R2 were obtained for DOS1 when 

grouping the visible and the SWR1, as well as the SWIR2, regions. The FLAASH 

correction algorithm showed moderate values of R2 by grouping the visible region 

of the spectrum in PC1 and NIR, as well as SWIR in PC2. This result is in 

agreement with the findings by Hadjimitsis et al. (2004) who obtained reliable PCs 

by grouping similar regions of the spectrum. The site El Sitio showed values of R2 

greater than 0.71 and the components derived from DOS1 were the best biomass 

estimators. The rest of the methods did not obtain significant results. Teseachi 

showed values of R2 between 0.41 and 0.98. Table 3 shows the way the Spectral  
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Figure 9. Variation in the precision of the correction methods represented by 

values of R2. Eden (a); El Sitio (b); Teseachi (c); ATCOR2 (—), DOS1 
(—) and FLAASH (—) through single band. 
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Figure 10. Variation in the precision of the correction methods represented by the 

RMSE (Kg·ha−1). Eden (a); El Sitio (b); Teseachi (c); ATCOR2 (—), 
DOS1 (—) and FLAASH (—) through single band. 
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Table 3. Accuracy of the correction methods represented by the values of R2 and 
RMSE for biomass estimation in the three PMS and the spectral bands 
forming the principal components. 

No Site Correction Method Year 

PC1 PC2 

R2 RMSE (Kg×ha−1) 

Bands Bands 

1 

Eden 

ATCOR2 

2010 1 2 3 4 5 7 0.48 69.08 

2 2011 1 2 3 4 5 7 0.45 21.54 

3 2012 n/d n/d n/d n/d 

4 2013 2 3 4 6 7 0.55 139.53 

5 2014 2 3 4 6 7 0.32 292.99 

6 

DOS1 

2010 1 2 3 4 5 7  0.01 88.78 

7 2011 1 2 3 4 5 7 0.97 * 4.97 

8 2012 n/d n/d n/d n/d 

9 2013 2 3 4 6 7 5 0.77 * 98.49 

10 2014 2 3 4 6 7 5 0.84 * 141.18 

11 

FLAASH 

2010 1 4 7 3 0.39 75.30 

12 2011 4 7 1 2 3 0.45 21.56 

13 2012 n/d n/d n/d n/d 

14 2013 3 4 5 6 7 2 0.42 158.38 

15 2014 2 3 4 5 6 7 0.63 * 214.41 

16 

El Sitio 

ATCOR2 

2010 1 2 3 4 7 0.97 * 19.10 

17 2011 1 2 3 4 5 0.93 * 15.82 

18 2012 2 3 4 5 7 1 0.94 * 15.20 

19 2013 3 4 6 7  2 5 0.86 * 17.36 

20 2014 2 3 4 6 7 5 0.95 * 44.52 

21 

DOS1 

2010 2 3 4 5 7  0.99 * 95.61 

22 2011 1 2 3 4 5 7 7 0.92 * 106.37 

23 2012 2 3 4 5 7 1 0.97 ** 11.46 
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24 2013 2 3 4 6 7 5 0.85 * 18.09 

25 2014 2 3 4 6 7 5 0.94 * 43.24 

26 

FLAASH 

2010 1 2 3 4 5 7  0.00 102.50 

27 2011 2 3 4 1 5 7 0.92 * 9.90 

28 2012 1 2 3 4 5 7 0.97 ** 11.39 

29 2013 3 4 6 7 2 5  0.71 34.29 

30 2014 2 3 4 6 7 5  0.95 ** 45.61 

31 

Teseachi 

ATCOR2 

2010 1 2 3 4 5 7 0.87 * 36.92 

32 2011 1 2 3  0.41 52.32 

33 2012 1 2 3 4 5 7 0.88 * 77.96 

34 2013 3 4 5 2 6 7 0.94 * 25.92 

35 2014 2 3 4 5 6 7  0.60 * 25.35 

36 

DOS1 

2010 1 2 3 4 5 7 0.97 ** 14.69 

37 2011 1 2 3  0.41 13.09 

38 2012 1 2 3 4 5 7 0.88 * 33.62 

39 2013 2 3 6 7 4 5 0.93 * 28.03 

40 2014 2 3 4 5 6 7  0.63 * 23.53 

41 

FLAASH 

2010 1 2 3 4 5 7 0.98 ** 14.63 

42 2011 1 2 3  0.41 13.24 

43 2012 1 2 3 4 5 7 0.88 * 33.49 

44 2013 2 3 6 7 4 5 0.84 * 42.16 

45 2014 2 6 7 3 4 5 0.71 25.50 

 

* = Significant level at P <0.05.  
** = Significant level at P <0.01. 
n/d = No data 
PC1= Principal component 1. 
PC2 = Principal component 2. 
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bands were grouped to form the principal components. Among the three CMs, 

DOS1 showed the most consistent outputs for all of the years. 

Figures 11 and 12 show the variations of R2 and RMSE obtained by the 

SLR analysis between biomass and the spectral information. The site that showed 

the highest precision was El Sitio. The method of DOS1 produced the most stable 

and the most precise results among the sites. 

The site Eden obtained low values of the coefficient of determination (0.3–

0.5) when corrected with ATCOR2. By correcting the data with DOS1, the 

precision improved significantly (P<0.05) for the data of 2011–2014 with R2 

values greater than 0.77. This indicates that DOS1 can estimate biomass 

production with a greater precision in spite of the accelerated changes in the 

succession of the grassland and the great density, as well as diversity of plants, 

in the site. 

El Sitio obtained precise results for biomass estimations by applying the 

three CMs, which indicates homogeneity in the reflectance of the grassland. For 

Teseachi, good yields were obtained in 2010, 2012, and 2013 with the three CMs, 

with a similar precision to El Sitio.  

In this study, we have reviewed three correction methods of satellite 

images applied them to a temporal series of 12 scenes. The precision of each 

method was assessed through values of R2 and RMSE. The DOS1 method, which 

is the simplest, provided a reasonable correction in the bands of the visible 

spectrum (Song et al., 2001; Cui et al., 2014). Given that the input parameters for 

DOS1 are derived from the image itself, it makes the method relatively easy to  
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Figure 11. Variation in the precision of the correction methods represented by 
values of R2. Eden (a); El Sitio (b); Teseachi (c); ATCOR2 (—), DOS1 
(—), and FLAASH (—) through PC. 
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Figure 12. Variation in the precision of the correction methods represented by 

RMSE (kg∙ha−1). Eden (a); El Sitio (b); Teseachi (c); ATCOR2 (—
), DOS1 (—), and FLAASH (—) through PC. 
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implement. Thus, it is preferred over more sophisticated methods that require the 

acquisition of atmospheric or meteorological data (Chavez, 1996; Kaufman et al., 

1997; Liang et al., 2002). The time required for each method can be a crucial 

factor when using multiple sets of images (Mahiny and Turner, 2007). The 

methods of ATCOR2 and FLAASH required much more processing time than 

DOS1. These requirements limit their application, especially when the historical 

atmospheric information is limited (Janzen et al., 2006; Cui et al., 2014; Mason et 

al., 2015). The differences in the results from ATCOR2 and DOS1 were probably 

due to the availability of reliable atmospheric historical data, which may have 

conferred to DOS1 a better performance (Janzen et al., 2006). Likewise, the 

differences between ATCOR2 and FLAASH, when performing radiometric 

correction on spectral data from vegetation, may be due to the water content of 

such vegetation (Wu et al., 2005). 

The CMs allowed for the conversion of digital numbers to reflectance 

values. The spectral reflectance of grasslands was low in the visible region for all 

of the three PMS during 2010–2014. Chlorophyll absorbs most of the light 

received on the photosynthetically active radiation range of the spectrum. 

Consequently, reflectance was higher in the NIR, SWIR 1, and SWIR 2, indicating 

a contrast between these and the aforementioned visible regions of the 

electromagnetic spectrum (Chuvieco et al., 2010; Sonobe et al., 2017). The 

variation in biomass production estimation for the period 2010–2014 can be 

largely explained by changes in vegetation, its growth conditions, and its 

distribution. As mentioned by Yan et al. (2015), the growth conditions in semi-arid 

and arid regions are largely affected by temperature and precipitation. In addition, 
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human activities, such as grazing and farming, importantly affect the vegetation 

distribution. It was observed that in the period when the scenes were taken, the 

spectral signature of the grassland varied along the years. This can be explained 

by the effects of density, weight, coverage, and shade, which are variable in grass 

communities (Manakos et al., 2011; Rodriguez-Maturino et al., 2017). 

The comparison of the different CMs was based on the bands or principal 

components that contributed the most to the estimations of biomass. This study 

proved that the DOS1 method may be enough for radiometric correction in 

grassland areas, given the data required, which include only a few parameters 

(Wu et al., 2005). The results obtained in this study indicate that DOS1 is sufficient 

to correct images used in the estimation of structural variables of the grassland. 

In this sense, it may not be necessary to employ complex algorithms when 

evaluating areas of grassland (Song et al., 2001; Janzen et al., 2006) 

The ANOVA applied to the three PMS revealed significant differences 

among DOS1, FLAASH, and ATCOR2 in the visible and the infra-red regions of 

the spectrum. This is consistent with the results reported by Vicente-Serrano et 

al. (2008) and Nazeer et al. (2014). In general, band 4 showed the most non-

significant differences, followed by bands 7 and 3. 

The correlations between biomass production and the spectral data 

obtained the highest values when the bands of red and infra-red were employed. 

In contrast, the relationships between biomass and the spectral values of the 

visible region were weak, indicating the sensitivity of this spectral range to the 

atmospheric variation, which agrees with that reported by Roy and Ravan (1996). 

Thus, in the temporal estimation and quantification of biomass, the application of 
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a method for radiometric correction is necessary to eliminate the temporal 

variability. For most of the studied years, we found that FLAASH showed the 

highest reflectance values in the NIR. Such high values affected the relationships 

between biomass and spectral values. Previous studies have shown that high 

values of reflectance affect the estimations of biomass and the determination of 

potential areas for grassland production (Song et al., 2001). 

The low biomass production values predicted for the three PMS could be 

due to site conditions or the date of data collection. Thus, the evaluation period 

may not be the best period to estimate biomass by using multitemporal data from 

the Landsat sensor. Our results confirmed a lack of association between spectral 

and biomass data. The relationship between the biomass and the bands (Table 

2), and between biomass and the principal components (Table 3), for all of the 

PMS evaluated confirmed that there was a high variability. Such variability could 

neither be explained by the spectral response of the bands nor by the principal 

components. It is possible that the high values of reflectance in the infra-red region 

that showed in the site Eden after applying the DOS1 method are due to the 

atmospheric dispersion (Lu et al., 2012). 

For the atmospheric and radiometric corrections, we have documented the 

differences between the reflectance values after applying the CMs to the data 

from different sites. In comparison with other multitemporal studies (Tan et al., 

2012; Nguyen et al., 2015; Raab et al., 2015), we have tested different CMs with 

a change of platform from Landsat 5 to Landsat 8 in grassland areas. In the site 

Eden, we found that the deviations between the estimated and measured biomass 

were high for 2013 and 2014. This happened when the biomass was estimated 
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with both the SLR and the MLR. Thus, such deviations can be attributed to the 

change of platform (TM to ETM+ and ETM+ to OLI). This change can cause 

instability in the time series (Schroeder et al., 2006). Eden was the site with the 

lowest values of the coefficient of determination. The MLR with PCs was 

performed to include all of the spectral variability and correlate it to biomass; 

however, the results showed low correlation values. Therefore, such spectral 

variability may be influenced by other sources of variation, such as climate, 

topography, and invasive species (Xie et al., 2009). For El Sitio, and analyzing 

the data with SLR, low values of R2 were obtained; in contrast, higher correlations 

were found with the MLR. This shows that biomass can be greatly estimated from 

the spectral data. More precise estimates, evidenced with higher R2 values, were 

produced with the data from Teseachi when analyzed with both the SLR and the 

MLR. The correlation of biomass and spectral data determined through MLR 

showed that, in at least two of the three PMS, the variation can be explained with 

the set of bands of the visible and infra-red ranges of the spectrum. Conversely, 

in one of the sites, it is necessary to collect more variables to explain the biomass 

variation. The inclusion of PCs in the biomass estimation allowed for an 

explanation of the spectral variability more effectively. 
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                            CONCLUSIONS AND RECOMMENDATIONS 

Atmospheric correction is a crucial step in the pre-processing of satellite 

images. Landsat images and biomass data from the field were employed to test 

the precision of three algorithms of atmospheric correction. According to the 

results, DOS1 presented the highest correlation values, pointing it out as a good 

method for the atmospheric correction of Landsat images and its application for 

the estimation of grassland biomass production. 

Determination of the grassland production for Teseachi obtained the lowest 

deviations between estimated and measured biomass when modelling this 

variable with both single and multiple linear regression. The precisions of the 

estimates were closely related to the temporal spectral stability of the images. For 

Eden, the results were the least precise, which indicates that there is a great 

variation in the terrain that is difficult to explain by the satellite images. Biomass 

estimation using field and spectral data, coupled with an adequate atmospheric 

correction method, can accurately reflect grassland characteristics. For future 

studies, models that consider the effects of climate, minimum and maximum 

temperatures, precipitation, and topographic data, such as elevation, slope, and 

aspect, could be tested for higher precisions. 

Three correction methods have been proposed and tested in this study. 

The simplest algorithm, DOS1, provided a reasonable correction and estimated 

biomass accurately when employing bands in the visible and infra-red regions of 

the spectrum, at least for cloud-free scenes. Operationally, the DOS1 method, 

which derives its input parameters from the image itself and is relatively easy to 
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implement, may be more reliable to implement over more sophisticated methods, 

which require the acquisition of atmospheric or meteorological historical data. 

In the multitemporal estimation of grassland biomass production employing 

spectral information, it is not necessary to apply complex radiometric correction 

procedures. The use of the DOS1 method provided good results given its nature 

of providing reliable results on dark surfaces. However, when the spectral signal 

is affected by various sources of variation, it may be necessary to apply high-

precision radiometric corrections, such as ATCOR2 or FLAASH. To make 

continuous estimates of biomass by remote sensors, it is preferable to employ a 

set of homogeneous Landsat images provided by a single platform. 

Precise estimates of biomass will allow for the quantification of potential 

carbon stores by grasslands, serve to regulate animal load based on temporal 

estimation, and ensure control on the use of the grassland biomass. Estimating 

the spatial distribution of biomass is of great importance to support the study of 

grassland ecology and its socioeconomic environment. This study proved that it 

is possible to estimate grassland biomass production by remote sensing through 

an SLR analysis. Grassland biomass maps can be used as a reference to assess 

the grassland condition, the grazing capacity, and potential animal production. 

The use of remote sensing tools in grassland ecosystems is important for their 

monitoring, conservation, and protection. 
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                                                      ABSTRACT 

SPATIAL NEAR FUTURE MODELING OF LAND USE AND LAND COVER 

CHANGES IN THE TEMPERATE FORESTS OF MEXICO 

BY: 

M. C. JESUS ALEJANDRO PRIETO AMPARAN 

The loss of temperate forests of Mexico has continued in recent decades 

despite wide recognition of their importance to maintaining biodiversity. This study 

analyzes land use/land cover change scenarios, using satellite images from the 

Landsat sensor. Images corresponded to the years 1990, 2005 and 2017. The 

scenarios were applied for the temperate forests with the aim of getting a better 

understanding of the patterns in land use/land cover changes. The Support Vector 

Machine (SVM) multispectral classification technique served to determine the 

land use/land cover types, which were validated through the Kappa Index. For the 

simulation of land use/land cover dynamics, a model developed in Dinamica-EGO 

was used, which uses stochastic models of Markov Chains, Cellular Automata 

and Weights of Evidence. For the study, a stationary, an optimistic and a 

pessimistic scenario were proposed. The projections based on the three 

scenarios were simulated for the year 2050. Five types of land use/land cover 

were identified and evaluated. They were primary forest, secondary forest, human 

settlements, areas without vegetation and water bodies. Results from the land 

use/land cover change analysis show a substantial gain for the secondary forest. 

The surface area of the primary forest was reduced from 55.8 % in 1990 to 37.7 

% in 2017. Moreover, the three projected scenarios estimate further losses of the 

surface are for the primary forest, especially under the stationary and pessimistic 
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scenarios. This highlights the importance and probably urgent implementation of 

conservation and protection measures to preserve these ecosystems and their 

services. Based on the accuracy obtained and, on the models generated, results 

from these methodologies can serve as a decision tool to contribute to the 

sustainable management of the natural resources of a region. 

Keywords: Markov chains, Scenarios, Cellular automata, Pessimistic scenario, 

Temperate forests, Dinamica-EGO, Weights of evidence, Land use/land cover 

change, Remote sensing. 
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                                                     RESUMEN 

SPATIAL NEAR FUTURE MODELING OF LAND USE AND LAND COVER 

CHANGES IN THE TEMPERATE FORESTS OF MEXICO 

POR: 

M. C. JESÚS ALEJANDRO PRIETO AMPARÁN 

Doctor en Philosophia de Recursos Naturales 

Secretaría de Investigación y Posgrado 

Facultad de Zootecnia y Ecología 

Universidad Autónoma de Chihuahua 

Presidente: Dr. Alfredo Pinedo Alvarez 

La pérdida de los bosques templados de México ha continuado en las 

últimas décadas a pesar del amplio reconocimiento sobre su importancia para el 

mantenimiento de la biodiversidad. Este estudio analiza los escenarios de cambio 

de cobertura de suelo/uso de suelo, utilizando imágenes satelitales del sensor 

Landsat. Las imágenes corresponden a los años 1990, 2005 y 2017. Los 

escenarios se aplicaron a los bosques templados con el objetivo de obtener una 

mejor comprensión de los patrones de cambio de cobertura de suelo/uso de 

suelo. La técnica de clasificación Support Vector Machine (SVM) sirvió para 

determinar los tipos de cobertura de suelo/uso de suelo, los cuales fueron 

posteriormente validados a través del Índice Kappa. Para la simulación de la 

dinámica de cambio de cobertura de suelo/uso de suelo, se utilizó un modelo 

desarrollado en Dinamica-EGO, que utiliza modelos estocásticos de las cadenas 

de Markov, autómatas celulares y pesos de evidencia. Para el estudio se propuso 

un escenario estacionario, optimista y pesimista. Las proyecciones basadas en 
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los tres escenarios fueron simuladas para el año 2050. Se identificaron y 

evaluaron cinco tipos de coberturas de suelo/uso de suelo. Estos son: bosques 

primarios, bosques secundarios, asentamientos humanos, áreas sin vegetación 

y cuerpos de agua. Los resultados del análisis del cambio de cobertura de 

suelo/uso de suelo muestran una ganancia sustancial para el bosque secundario. 

La superficie del bosque primario se redujo del 55.8 % en 1990 al 37.7 % en 

2017. Además, los tres escenarios proyectados estiman que las pérdidas 

adicionales de la superficie son para el bosque primario, especialmente bajo los 

escenarios estacionario y pesimista. Esto pone de híncapie la importancia y 

probablemente la urgencia de la aplicación de medidas de conservación y 

protección para preservar estos ecosistemas y sus servicios. A partir de la 

precisión obtenida y de los modelos generados, los resultados de estas 

metodologías pueden servir como una herramienta de decisión para contribuir al 

manejo sostenible de los recursos naturales de una región. 

Palabras clave: Cadenas de markov, escenarios, automatas celulares, 

escenario pesimista, bosques templados, Dinamica-EGO, pesos de evidencia, 

cambio de cobertura de suelo/uso de suelo, percepción remota. 
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                                                   INTRODUCTION 

Forest ecosystems are important because they provide a wide variety of 

products and services for the human well being (Hall et al., 2006; Fischer and 

Lindenmayer, 2007; Weiskittel et al., 2011) harvested products (Houghton and 

Nassikas, 2017), carbon sequestration (Hawkes et al., 2017), soil retention 

(Borrelli et al., 2017), water supply (Sun et al., 2006) and are the habitat of many 

species of plants and animals. However, antrophongenic activities are the main 

cause of degradation of almost half of the world surface in the last three centuries. 

That has caused the loss of lots of our precious natural resources. Twenty-five 

nations have practically degraded 100 % of their forests, and another 29 nations 

have degraded 10% of their forest areas (Millennium Ecosystem Assessment, 

2005). 

Temperate forests represent a key element in the carbon cycle (Pan et al., 

2011). They are important carbon dioxide sinks (Ma et al., 2017), offsetting the 

emissions produced by the world population (FAO, 2018). Temperate forests 

store 14 % of the planet's carbon (Pan et al., 2011). However, projections of global 

environmental change show that temperate forests show high vulnerability 

(Gonzalez et al., 2010). This vulnerability can change the productivity of forests 

by modifying net carbon sequestration rates (Peters et al., 2013). 

Temperate forests of Mexico occupy 17 % of the national territory, 

represented by 32 million hectares. In this region, the greatest association of pine 

and oak forests in the world occurs (González et al., 2012). Around 23 different 

species of pines and close to 200 species of oaks live in the ecoregion of Sierra 

Madre Occidental (Navar, 2009). However, 40 thousand hectares of forests get 
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on average lost annually. This region has the highest deforestation rate in the 

world (Velázquez et al., 2002; Mas et al., 2004).  

The study of the land use/land cover changes (LULCC) has become a 

fundamental research topic, since the change in land use/land cover (LULC) 

affects forest ecosystems and their biodiversity (Gharun et al., 2017). The LULCC, 

produced by anthropogenic activities have significantly altered the ecosystems 

biodiversity and services (Butler and Laurance, 2008; Miles and Kapos, 2008; 

Miranda-Aragón, 2013). The dynamics of LULCC directly affect the landscape 

patterns, the biogeochemical cycles, the ecosysistems structure and function 

(Scheffer et al., 2001). Recently, the analysis of the spatio-temporal patterns has 

been the objective of several research studies (Huang et al., 2009; Manjarrez-

Domínguez et al., 2015; Vázquez-Quintero et al., 2016). The models of LULCC 

commonly employed, quantify deforested surfaces, measuring the degree of 

change in the ecosystem (Lapola et al., 2011). Regression methods suchs as the 

logistic regression have been employed to generate models of LULCC. These 

models suppose that the relationship between the LULCC and the variables that 

produce it is a logistic function; however, it has been demonstrated that this 

relationship is too general (Mas, 2010; Mas, 2014). The dynamics and complexity 

of the ecosystem requires a more complete evaluation of LULCC. The spatial 

modeling is a technique contemplating alternative scenarios of LULCC, which 

could contribute to better explain the key processes influencing LULCC 

(Pijanowski et al., 2002; Eastman et al., 2005; Torrens, 2006; Perez-Vega et al., 

2012). Thus, one of the main functions of the LULCC models is the establishment 

of scenarios, with the aim of changing policies and inadequate practices for the 
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sustainable management of natural resources (DeFries et al., 2007; Berberoğlu 

et al., 2016).  

Several approaches to establish LULCC scenarios have been developed 

and tested to generate scenarios of LULCC. Ferrerira et al. (2012) generated 

deforestation scenarios to 2050 in the central Brazilian savanna biome finding the 

possible increase of 13.5 % in deforested areas. Kamusoko et al. (2011) 

evaluated three scenarios (optimistic, pessimistic and business-as-usual) in the 

Luangprabang province, Lao People’s Democratic Republic, finding decreases in 

forest areas in the pessimistic and business-as-usual scenarios and an increase 

in forest areas in the optimistic scenario under a strict regulatory policy. Gago-

Silva et al. (2017) used a combination of Bayesian methods and Weights of 

Evidence to model the probability of change in a western part of Switzerland. 

Galford et al. (2015) used Bayesian Weights of Evidence for policiy scenarios 

from 2010 a 2050 evaluating plans for agriculture and forest in Democratic 

Republic of Congo. 

The models to establish reference scenarios of changes in LULCC are 

based on: systems of equations, statistic models, experts, evolutionary and 

cellular models, even though there have been efforts to combine plataforms in a 

multiagent system (Mas et al., 2014; Stan et al., 2017). The statistical models 

employ spatial statistics and regression, in comparison with the expert models, 

which allow the expert knowledge to lead the model path (Parker et al., 2003; 

Soares-Filho et al., 2013). The evolutionary or cellular models are very competent 

to determine the ecologycal alteration; however, they just provide information 

about the causality or the decision-making (Parker et al., 2003). 
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The generation of LULCC scenarios for the forest region of the state of 

Chihuahua, Mexico is necessary because of the higher temperate forest 

deforestation rates in the country. The generation of the LULCC scenario shows 

two important aspects: expert knowledge and knowledge based on data. Expert 

knowledge is useful to establish methodological processes according to the needs 

of the user (Gounaridis et al., 2018). Knowledge based on data, helps to 

understand the general behavior between the factors of change of land use in a 

spatial way (Camacho-Olmedo et al., 2018). Most studies are based on 

knowledge of the data (Peagelow and Olmedo, 2005; Kityuttachai et al., 2013), 

however, few allow the inclusion of both (Sohares-Filho et al., 2006; Olmedo et 

al., 2018). 

The Dinamica Environment for Geoprocessing Objects (Dinamica-EGO) is 

a flexible open platform, which allows analyzing distribution, abundance and 

spatio-temporal dynamic of the landscape (Soares-Filho et al., 2002; Lima et al., 

2013). The model incorporated to Dinamica-EGO employs cellular automata to 

simulate the changes happening in a grid, estimating the transition probability, as 

well as the direction of changes based in stocastic processes (Rutherford et al., 

2008; Arsanjani et al., 2011). Dinamica-EGO allows users to incorporate expert 

knowledge into the overall statistical analysis based on the spatial data set (Mas 

et al., 2014). In addition, Dinamica-EGO incorporates the possibility of modifying 

landscape metrics in the calibration procedure to generate the simulation (Mas et 

al., 2012). In a comparative evaluation of approaches to modeling LULCC, two 

key advantages over Dinamica-EGO were emphasized: 1) incorporation of the 

Patcher and Expander functions. The first function generates new patches in the 
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landscape and the second expands the previously formed patches, 2) Dinamica-

EGO allows the incorporation of multiresolution validation by means of the Fuzzy 

Similarity Index. 

The aim of the present study was (a) to evaluate the change dynamics in 

the period from 1990 to 2017; (b) to simulate the changes of LULCC for the year 

2050 and (c) to elaborate a discussion about the impacts of different scenarios, 

which could happen in the future in a forest region of the state of Chihuahua, 

Mexico. Specifically, three scenarios, pessimistic, optimistic and stationary state. 

The model will identify where the different types of LULCC could hapen. This will 

allow that future studies could determine changes in carbon sequestration in both, 

on the surface extension and quantity. 
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                                       MATERIALS AND METHODS 

Study Area 

The study area is located in the western part of the state of Chihuahua, 

Mexico. It is part of the ‘Sierra Tarahumara’ and have a surface area of 497,159 

ha. Its extreme coordinates are 108° 00´ W, 29° 00´N and 107° 10´ W, 27° 30´ N 

(Figure 1). It is one of the regions of temperate forests, which has experimented 

the greatest disturbances in the past years in the state of Chihuahua (Herrera, 

2002). It belongs to the most extensive forest areas in North America. It is 

immersed within a complex orography composed of large canyons and deep 

canyons, which results in a mixture of temperate and tropical ecosystems. It is 

characterized by its high biodiversity and number of endemic species, estimating 

the presence of around 4000 species of plants. Also, it is recognized by the 

International Union for the Conservation of Nature as one of the megacenters of 

plant diversity (Felger et al., 1995). The main land uses in the area include: pine 

forests, oak forests, pine-oak and oak-pine forest associations, agriculture, and 

grassland communities. The economic activities in the region are forestry, 

extensive livestock and rainfed agriculture (INEGI, 2003). 

Data Source 

For the analysis of the LULCC, three scenes of the Landsat sensor (Path 

33, Row 41), with a spatial resolution of 30 m, were used. The scenes 

corresponded to the years 1990, 2005 and 2017 and they were acquired from 

clear sky days and each of them taken during the same month to reduce the 

temporal variation. The scenes were downloaded from the United States  
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Figure 1. Location and elevations of the study area. 
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Geological Survey (USGS, 2018). The characteristics of each scene can 

be seen in Table 1. The scenes were radiometrically corrected. The radiometric 

correction was carried out with the QGis software 2.8 through the SemiAutomatic 

Classification plugin (Congedo, 2013).  

Integration and Composition of Bands 

Once the scenes were corrected, they were integrated into a layer stack. 

False color composites for the Landsat TM5 were then generated, with a 

combination of the bands 5, 4 and 3. Band 5 corresponds to the infrared channel 

(1.55-1.75 m), band 4 to the near infrared (0.76-0.90 m) and the band 3 to the 

red channel (0.63-0.69 m). This combination was applied to the scenes of 1990 

and 2005. Regarding the scene of 2017, the combination for Landsat OLI8 was 

applied and corresponded to the bands 6, 5 and 4, where band 6 corresponds to 

the medium infrared channel (1.55-1.65 m), band 5 to the near infrared channel 

(0.85-0.88 m) and band 4 to the red channel (0.64-0.67m) (Lillesan and Kiefer, 

2000). 

Land Use and Land Cover Classification 

The Suport Vector Machine (SVM) classification was applied to the 1990, 

2005 and 2017 images through the software R (R Core Team, 2016) with the 

package “caret” (Kuhn et al., 2018) to obtain LULC information. The SVM 

classifier is a supervised technique of nonparametric statistical methods 

(Mountrakis and Ogle, 2011). The SVM classification has been used in several 

research studies in the past (Kavzoglu and Colkesen 2009; Otukei and Blashke 

2010; Shao and Lunetta, 2012). For the supervised classification, five classes 
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Table 1. Scenes characteristics. 

Sensor Date Characteristics 

Landsat TM 5 1990 7 spectral bands, 30 m resolution 

Landsat TM 5 2005 7 spectral bands, 30 m resolution 

Landsat OLI 

8 
2017 

8 spectral bands, 30 m resolution; 1 panchromatic 

band 15 m resolution 

 

TM= Thematic Mapper. 
OLI= Operational Land Imager. 
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of land use were defined; 1) primary forest, 2) secondary forest, 3) human 

settlements, 4) areas without vegetation and (5) water bodies (Table 2). 

Modeling and Spatial Simulation with Dinamica-Ego 

The LULCC scenarios were made based on the historical trends of change 

in forest cover during 1990-2017 of the supervised classifications using Dinamica-

EGO (Sohares-Filho et al., 2002). The historical trends of LULCC is based on the 

transition matrix (Monteiro et al., 2018). Dinamica-EGO uses the algorithm of 

cellular automata, and the method Weights of Evidence (Camacho-Olmedo et al., 

2018). For the simulation of deforestation, the following steps were undertaken: 

1) selection of change drivers as well as transitions, 2) exploratory analysis of the 

drivers of deforestation, 3) simulation and 4) validation. These four steps are 

described in the following sections. 

Selection of Variables and Transitions 

The selection of the set of exploratory variables to simulate the LULCC is 

essential for the modeling success (Miranda-Aragón et al., 2012; Perez-Vega et 

al., 2016). In this study, 19 variables were used; 17 static and two dynamic 

variables. Static variables remain constant during model execution. Dynamic 

variables change during the execution of the model and they are continuously 

updated in each iteration (Camacho-Olmedo et al., 2018). The set of variables 

used is shown in Table 3. 
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Table 2. Land use/land cover types determined through the supervised 
classification method. 

Land use and land 
cover 

Acronym Description 

Primary forest PF Forest fully covered with canopy 

Secondary forest SF Forest partially covered with canopy 

Human settlements HS Residential areas 

Areas without 

vegetation 
AWV 

Areas without vegetation, agriculture 

areas or induced grasslands 

Water bodies WB Water bodies 
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Table 3. Variables feeding the deforestation model. 

No 
Variable 

type 
Name Unit Acronym 

1 

Density 

Density of main roads m2/Km2 Denmr 

2 Density of secondary roads m2/Km2 Densr 

3 Density of main streams m2/Km2 Denms 

4 Density of secondary streams m2/Km2 Denss 

5 Density of rural settlements m2/Km2 Denrs 

6 

Proximity 

Distance to sawmills m Diss 

7 Distance to water bodies m Diswb 

8 Distance to main roads m Dismr 

9 Distance to secondary roads m Dissr 

10 Distance to main streams m Disms 

11 Distance to secondary streams m Disss 

12 Distance to rural settlements m Disrs 

13 Distance to urban settlements m Disus 

14 Distance to mines m Dism 

15 Distance to areas without 

apparent vegetation 

m Disawav 

17 

Topographic 

Altitude m Alt 

18 Slope ° Slop 

19 Topographic position index Dimensionless TPI 
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The transition refers to the total amount of LULCC that occurred in the 

simulation period. In this study, the transitions of interest were: a) primary forest 

to secondary forest, b) primary forest to areas without apparent vegetation, c) 

primary forest to urban areas and d) secondary forest to areas without apparent 

vegetation (Table 4). 

Exploratory Analysis of the Data 

When we modeled LULCC dynamics, Weights of Evidence (WoE) were 

applied to project transition probabilities. Regarding deforestation, degradation or 

any other type of change, we previously know about the location of favorable 

conditions for LULCC. The influence of static and dynamic variables and the 

elaboration of the LULC maps was performed with WoE in the Dinamica-EGO 

software (Soares-Filho et al., 2010). 

Positive values of WoE represent an attraction between a transition of land 

use and a specific variable. The greater the value of W+, the greater the 

probability of transition. Negative values of W- indicate low probabilities of 

transition instead (Maeda et al., 2010). By using the WoE values of the variables 

used in the analysis of LULCC, the Dinamica-EGO model calculates the transition 

probability of each pixel to change. Thus, the pixels are assigned with a probability 

value for a given transition and probability maps are generated for the transitions 

of interest (Soares-Filho et al., 2009 and 2010; Mas and Flamenco, 2011). 

Given that the basic hypothesis of the WoE technique is that the driving 

variables must be independent, for this study the correlation between the 

variables was tested through the Cramer Coefficient (V) showed in Equation 2. 
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Table 4. Transitions of land use/land cover. 

To 

F
ro

m
 

 PF SF HS AWV WB 

PF  ✓ ✓ ✓  

SF    ✓  

HS      

AWV      

WB      

 

AWV=Areas without vegetation,  
SF= Secondary forest,  
HS= Human settlements,  
WB=Water bodies,  
PF= Primary forest 
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𝑉 = √
𝜒2

𝛤 … 𝑀
 (2) 

where: 𝜒2 = is the chi-square statistic of the contingency between two variables, 

𝛤 = denotes the sum of the values of contingency, 𝑀 = is the minimum of n-1 or 

m-1, where n denotes the number of rows and m the number of columns. 

Bonham-Carter (1994) mentioned that values lower than 0.5 for the Cramer 

Coefficient (V) suggest independence, while values higher than 0.5 involve a 

greater association (Almeida et al., 2003; Teixerira et al., 2009). 

Simulation of land use and land cover changes 

Three types of scenarios were used for 2050; they were called pessimistic, 

optimistic and stationary. For the three scenarios, the modeling base was the 

period 1990-2017. The transition matrix of 1990 and 2017 were used to estimate 

the possible change in forestry coverage in the future, taking 2017 as the 

beginning year and 2050 as the final year. In the pessimistic scenario, the 

transition probability matrix and the change function (patcher and expander) were 

modified, increasing the deforestation and fragmentation rates between 1990 and 

2017. This was done based on the hypothesis that the development of road 

infrastructure, urban expansion, fires, uncontrolled exploitation, among others, will 

produce strong spatial changes of land use. For the optimistic scenario, the state 

and national forest development plans were considered. Such plans promote the 

protection and conservation of forest resources (CONAFOR, 2001). For this 

scenario, the conservation and promotion of strategies to protect forests were 

represented by reducing the transition matrix value, as well as the patcher and 
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expander change functions. Regarding the stationary scenario, transitions or 

change functions were not modified. In this case, it is assumed that the trend will 

be the same as the one between 1990 and 2017. 

Validation 

To evaluate the model performance, we used a Fuzzy Similarity Index 

(FSI), where the representation of a pixel is influenced by itself and its 

neighborhood (Ximenes et al., 2011; Yanai et al., 2011; Chadid et al., 2015). The 

FSI employed in this study was developed by Hagen (2003), modified by Soares-

Filho (2014) and implemented in Dinamica-EGO. The FSI verifies the agreement 

between the observed and the simulated land use and land cover datasets by 

obtaining the number of coincident cells within increasing window sizes of a 

neighborhood (Costanza, 1989; Soares-Filho, 2017). The validation process was 

carried out by comparing a simulated map and a reference map. The simulation 

of the 2017 LULCC map was generated. To generate the simulation of 2017, the 

transition matrix was used between 1990 and 2005. The comparison through the 

FSI allowed to evaluate the areas of coincidence of change and no change 

between the real and simulated map of 2017. Finally, the general procedure used 

in this study is outlined in the flowchart depicted in Figure 2. 
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Figure 2. Flowchart of the methodological procedure followed to produce the 
proposed scenarios. Abbreviations: TM: Tematic Mapper, OLI: 
Operational Land Imager, WoE: Weights of Evidence, LUCC: Land use 
and cover change. 
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                                    RESULTS AND DISCUSSION 

Detection of Land Use/Land Cover Changes 

Results from the analysis of LULCC show a considerable gain for 

secondary forest. The forest cover of the primary forest was reduced from 55.8 % 

of the study area in 1990 to 37.7 % in 2017. The areas without vegetation 

increased their area from 4.11 % to 4.87 % during 1990-2017 (Table 5). 

Regarding human settlements and water bodies, they showed a positive trend 

with an increase from 0.03 % and 0.01 in 1990 to 0.1 % and 0.03 in 2017, 

respectively. In general, the primary forest was the land use that experimented a 

negative trend. The rest of the land uses showed surface gains. The rate of 

change obtained indicate that the secondary forest, the human settlements and 

the water bodies were the land uses with the greatest transformation rates, with 

8.03, 12.58 and 27.48, respectively, for the period of 1990-2017 and with 10.68, 

15.96 and 12.3, respectively, from 2005 to 2017. Figure 3 shows the area 

occupied by the land uses studied. Likewise, it shows the rate of change of these 

land use/land cover for the periods 1990-2005 and 2005-2017. The calculated 

global precision, based on the Kappa Index, presented values of 80 %, 85 % and 

84 % for 1990, 2005 and 2017, respectively. Table 6 shows the land use/land 

cover change dynamics. The primary forest lost the greatest surface area (28,406 

ha) during 1990-2005, increasing the surface lost to 63,546 ha during 2005-2017. 

In contrast, the secondary forest showed the largest increases in area with 87,800 

ha in the period 1990-2017. 

Transition matrix  
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Table 5. Area occupied for five types of land uses during 1990, 2005 and 2017, 
and rate of change for the periods 1990-2005 and 2005-2017. 

Land Use 
Occupied area (%) Exchange rates 

1990 2005 2017 1990-2005 2005-2017 

AWV 4.11 4.79 4.85 8.33 8.43 

SF 40.05 45.05 57.72 8.03 10.68 

HS 0.03 0.05 0.10 12.58 15.96 

WB 0.01 0.02 0.03 27.48 12.36 

PF 55.80 50.08 37.30 6.41 6.21 

 

AWV=Areas without vegetation.  
SF= Secondary forest.  
HS= Human settlements.  
WB=Water bodies.  
PF= Primary forest. 
 

  



92 
 

 

Figure 3. Land use/land cover of 1990 (a), 2005 (b), 2017 (c), changes during 
1990-2005 (d) and changes during 2005-2017. Abbreviations: AWV: 
areas without vegetation, SF: secondary forest, WB: water bodies, HS: 
human settlements and PF: primary forest. 
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Table 6. Land use/land cover change dynamics. 

Land use 1990-2005 2005-2017 Difference 
Type of 
change 

1990-2005 2005-2017 

AWV 3384.40 273.34 3657.74 Deforestation 3120.40 7283.95 

SF 24826.78 62973.88 87800.66 Degradation 54455.78 73904.27 

HS 117.74 249.31 367.05 Other 76.22 219.41 

WB 76.79 50.15 126.94 Recovery 27128.71 20204.13 

PF -28406.49 -63546.18 -91952.66 -- -- -- 

 

AWV=Areas without vegetation.  
SF= Secondary forest.  
HS= Human settlements.  
WB=Water bodies. 
PF= Primary forest. 
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The transition probabilities of LULCC for the periods 1990-2005 and 2005-

2017 are shown in Table 7. The diagonal of the matrix represents the permanence 

probability, i.e. the probability of a LULC type to remain unchanged. The areas 

without vegetation showed a 90 % probability of transition from 1990 to 2005, 

lowering it to 62 % from 2005 to 2017. The areas of primary forest presented a 

negative trend with a 71 % probability of permanence in the period 1990 to 2005, 

and changing it to 61 % for the period 2005-2017. 

Weights of Evidence (WOE) Analysis 

The WoE of the 19 variables were analyzed to eliminate those values that 

were above 0.5, based on the Cramer Coefficient (V). The distance to urban 

locations showed positive values of WoE from 1000 to 9000 m distance and from 

42,000 to 47,000 m indicating an influence for cover change from secondary forest 

to area without vegetation. The distance to rural localities showed positive values 

of WoE in distances from 0 to 700 m. The topographic position index showed 

positive values in the ranges of -150 to -60 and 120 to 240. The distance to 

sawmills indicates that deforestation appears from 0 to 16,000 m with respect to 

the process of change between secondary forest to areas without vegetation. The 

transition from primary forest to area without vegetation is likely to occur in 

distances to the main roads between 13,000 and 21,000 m. The density of main 

streams such as rivers and creeks had an influence in densities from 0.039 to 

0.079 m2/ km2. 
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Table 7. Transition matrix of probability for land use/land cover change (1990-
2005, 2005-2017, 1990-2017). 

 Periodo AWV PF HS WB PF 

AWV 

1990-2005 0.9000 0.0250 0.0250 0.0250 0.0250 

2005-2017 0.6250 0.3504 0.0108 0.0029 0.0109 

1990-2017 0.6615 0.3124 0.0120 0.0035 0.0106 

SF 

1990-2005 0.0222 0.7516 0.0008 0.0005 0.2248 

2005-2017 0.0557 0.8116 0.0004 0.0000 0.1323 

1990-2017 0.0654 0.7945 0.0012 0.0006 0.1384 

HS 

1990-2005 0.0452 0.0645 0.8806 0.0000 0.0097 

2005-2017 0.0557 0.2479 0.6959 0.0000 0.0004 

1990-2017 0.0651 0.0774 0.8575 0.0000 0.0000 

WB 

1990-2005 0.0000 0.1254 0.0000 0.8553 0.0193 

2005-2017 0.0095 0.1684 0.0000 0.8030 0.0191 

1990-2017 0.0000 0.1868 0.0000 0.7957 0.0175 

PF 

1990-2005 0.0020 0.2865 0.0000 0.0000 0.7115 

2005-2017 0.0056 0.3798 0.0003 0.0000 0.6144 

1990-2017 0.0071 0.4419 0.0002 0.0000 0.5508 

 

AWV=Areas without vegetation, SF= Secondary forest, HS= Human settlements, 
WB=Water bodies, PF= Primary forest. 
Bold letters the probability of permanence on the same class. 
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In the transition from primary forest to secondary forest, the variable 

altitude showed positive values of WoE in the range of 1,200-1,300 m, suggesting 

that most of the changes occur in this range. The slope showed that the process 

of change between primary forest and secondary forest is located on slopes of 

45-60 and 60-75 degrees. The transition from primary forest to human settlements 

was influenced by the distance to secondary streams from 500 to 1000 meters. 

The distance to sawmills presented an influence from 0 to 6,000 meters. The 

distance to mines showed that the attraction to change occurs between 2000 and 

10,000 m. 

Model Validation 

The model validation was carried with the simulated and the true land use 

classification of 2017. The FSI was applied for neighborhoods from 1×1 to 7×7 

pixels. The minimum value reported for FSI was 49 % in 1×1 pixel, while in 7×7 

pixels the value of FSI was 91 %. These results indicate that the real and 

simulated land use changes agree from 49 % to 91 %. Simulation starts with 49 

% and adjusts to 91 %, reaching a similarity adjustment value at a distance of 210 

m. These results agree with that obtained by Ximenes et al. (2011). According to 

Soares-Filho (2017), and similar studies (Carlson et al., 2012; de Rezende et al., 

2015; Elz et al., 2015), for the resolution and the number of transitions considered 

in the model, the values obtained for the FSI suggest that the models are good 

and can be used in the simulation of LULCC scenarios. Figure 4 represents the 

FSI in relation to the size of the window. 

Scenarios 
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Figure 4. Variation of the FSI as a function of different window sizes. 
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The LULCC based on the transitions between 1990 and 2017 for the 

stationary, optimistic and pessimistic scenarios are presented in Table 8. Figure 

5 shows the LULC classification of 2017 and the stationary, optimistic and 

pessimistic scenarios for 2050, after the model calibration. 

In the stationary scenario the area without vegetation would increase from 

4.8 % in 2017 to 5.27 %. Likewise, the secondary forest would increase from 57.7 

% (2017) to 73 %. For this scenario, the changes in human settlement and water 

bodies would not increase or reduce their area. Conversely, the rate of change of 

primary forest and secondary forest were the greatest between 2017 and 2050. 

Regarding the optimistic scenario, it showed reductions in areas of primary forest; 

however, in lower magnitudes than for the stationary and pessimistic scenarios. 

For the pessimistic scenario, the Markov matrix was modified considering a 

greater pressure on the forest ecosystem. The area without vegetation showed a 

positive trend, with 4.8 % in 2017 and an increase to almost 8 % in 2050. The 

secondary forest would go from 57.7% to 85.6 % in 2050. Finally, the primary 

forest would reduce its area to an 8 % and isolated forest areas would appear. 

The rate of change for this scenario were the ones that showed the highest values. 

The LULCC dynamics projected for 2050 for the three scenarios (stationary, 

optimistic, pessimistic) is presented in Table 9. 

In this study, scenarios of LULCC for 2017 and 2050 were generated for a 

temperate forest region of Chihuahua Mexico. The scenarios were developed in 

Dinamica-EGO. Results were consistent with the results described by Maeda et 

al. (2011). For the generation of transitions and simulation of scenarios, LULC of 

1990, 2005 and 2017 were determined. In general, proximity to sources with  
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Table 8. Percentage of surface area occupied by five land use/land cover types 
and rate of change for 2017-2050 based on three scenarios. 

Land Use 
Occupied surface area (%) Change rate 

2017 2050s 2050o 2050p 2017-2050s 2017-2050o 2017-2050p 

AWV 4.848 5.275 5.017 7.695 3.40 3.23 4.96 

SF 57.716 73.721 61.863 83.628 3.99 3.35 4.53 

HS 0.105 0.105 0.105 0.105 3.13 3.13 3.13 

WB 0.031 0.031 0.031 0.031 3.12 3.13 3.12 

PF 37.300 20.868 32.983 8.541 1.75 2.76 0.72 

 

AWV=Areas without vegetation,  
SF= Secondary forest,  
HS= Human settlements,  
WB=Water bodies,  
PF= Primary forest 
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Figure 5. a) Land use/land cover of 2017 and simulated land use/land cover 
projected for the year 2050 as a result of the b) Stationary, c) 
Pessimistic and d) Optimistic scenarios. ■ areas without vegetation, ■ 
secondary forest, ■water bodies, ■ human Settlements and ■primary 
forest. 
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Table 9.  Land use/land cover change dynamics (ha) under three projected 
scenarios. 

Land use 2017-2050s 2017-2050o 2017-2050p 

AWV 2121.97 840.44 14150.28 

SF 79565.57 20617.02 128818.00 

HS 0.87 1.25 1.05 

WB 0.46 0.32 0.10 

PF -81688.00 -21459.04 -142969.31 

 

AWV=Areas without vegetation.  
SF= Secondary forest.  
HS= Human settlements.  
WB=Water bodies. 
PF= Primary forest. 
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anthropogenic activity as well as topography were important factors influencing 

the change in forest cover. The exchange between primary forest and secondary 

forest represented the main transition between 1990 and 2017. This transition 

produced the greatest impact, in agreement with the results reported by Perez-

Vega et al. (2016). Such transition was influenced by the altitude, slope, and 

density of water streams, in agreement with the results of Armenteras et al. (2006) 

and Chadid et al. (2015). The transition from primary to secondary forest could be 

attributed to the reduction in pine vegetation, where shrubs would become 

dominant. A consequence of the reduction of primary forest is the migration of 

fauna, which deals with the dispersal of the seeds of large-crowned trees 

(Lehouck et al., 2009). Other consequences include the change of lands to 

livestock production systems (Maeda et al., 2010) and the presence of areas with 

high solar incidence and low coverage, which are prone to fires (de Rezende et 

al., 2015). Another reason for the reduction of primary forest is the proximity to 

urban rural localities and roads, which is in agreement with the results reported 

by Aguiar et al. (2007) and Osorio et al. (2015). The proximity to urban and rural 

communities indicates the possible extraction of wood for export and also 

facilitates the expansion of the agricultural or grazing frontier (Chadid et al., 2015). 

This can be verified by the number of sawmills in the study area. The process of 

deforestation/degradation is strongly related to this cause. In the forested areas 

of Chihuahua, the rural localities are in a high degree of marginalization (González 

et al., 2012) where there exist agricultural incentives PEF 2025 (CONAFOR, 

2001), causing the possible increase of the areas without vegetation. Another 
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reason for the degradation may be the distance to the main roads and the 

topographic position. 

The results obtained for the different scenarios showed differences among 

the surfaces of land use. The stationary scenario resulted in a considerable 

change in the primary forest, mainly. This scenario considers that the transition 

values among land use coverages will continue. The long-term impacts of the 

deforestation/degradation process include increased reservoir sedimentation and 

decreased flows in the dry season (Gingrich, 1993). Although the optimistic 

scenario showed increases in non-forested areas, this scenario was the one that 

showed the greatest resistance for the transitions from primary forest to any other 

LULC. This scenario considers the strict application of the regulation of forest 

resources, in agreement with the general trend in the protection of forest 

ecosystems to degradation (UN, 2015) and the projections of the PEF 2025 (PEF, 

2001). The pessimistic scenario showed the greatest losses in the coverage of 

the primary forest. In addition, the increase in areas without vegetation, which is 

mainly associated to cropping and the proximity to water currents, is one of the 

main outputs of the pessimistic scenario, which agrees with the study by Elz et al. 

(2015). The increase in agricultural areas resulting from this scenario may benefit 

the inhabitants economically; however, the expansion of this type of land use/land 

cover could lead to a greater demand of water for irrigation purposes, which could 

potentially impact water resources (Maeda et al., 2010). 

Population growth (Barni et al., 2015), the market demand and the lack of 

technification for wood processing cause the opening of land and the extraction 

of wood for self-consumption. Taking these aspects into account, the simulation 
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of changes in forest cover indicates pressure on forest resources, which is 

consistent with that found by Kamusko et al., (2011). As a consequence, forest 

degradation could lead to soil loss (Quan et al., 2011), loss in biodiversity 

(Falcucci et al., 2007) and landscape connectivity (Tambosi et al., 2014), habitat 

fragmentation (Nagendra et al., 2004), the presence of invasive species (Mas et 

al., 2012), among others. 

The LULCC model of this study incorporated the Markov chains, Cellular 

Automata and WoE methods. Several transitions were simulated as in the studies 

by Soares-Filho et al., (2010), Ferreira et al. (2013) and Elz et al. (2015). The 

validation was carried out based on the FSI, as it was also performed in previous 

research (Ximenes et al., 2011). The result of this analysis, where the three 

aforementioned methods are combined, highlighted the variables driving the 

process of degradation/deforestation, as well as the manipulation based on the 

knowledge of the transition probabilities, being more suitable for the simulation of 

LULCC (Mas and Flamenco, 2011). The transition probability matrices revealed 

that the primary forest has a negative trend in its occupied area, suggestsing that 

degradation will continue over this land use, this area of primary forest changed 

to secondary forest. Although the other transitions did not produce important 

changes in the spatial configuration of the landscape, but their cumulative long-

term effect could negatively impact the functioning of the ecosystems and their 

biodiversity (Pompa, 2008). 

In this study, we focused on hypothetical scenarios where the pressure of 

forest resources was controlled by changing the transition probability. However, it 

is necessary to study scenarios where market demand (Merry et al., 2009) or 
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illegal timber extraction (Chadid et al., 2015) is considered. The wood 

clandestinage corresponds to 30 % in some forest management units of 

Chihuahua (Silva, 2009).  

The scenarios are not exact projections of the future state of the 

environment (Feng and Liu, 2016). However, it is an alternative means of 

supporting forest managers, which can serve as a valuable tool for studying 

political decisions (Kolb and Galicia, 2018). That would lead to a better knowledge 

of forest exploitation and protection. Managers can take into account the proposed 

scenarios and take decisions based on the one with the most promising results. 

Due to the distribution of economic information (municipality based) and 

the lack of information from georeferenced illicit extractions, we believe an 

approach such as agent-based models would help to improve the study and 

address these issues. Finally, the model did not consider climatic variations such 

as precipitation and temperature, which can affect patterns and dynamics in 

recovery zones. That should be implemented in future studies. 
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                          CONCLUSIONS AND RECOMMENDATIONS 

The use of scenarios as a methodology to study LULCC has been studied 

in depth at different scales and in different areas. However, several improvements 

can be implemented. This study presents an approach that integrates expert 

knowledge, and geospatial technologies such as geographic information systems 

and spatial simulation. The developed scenarios were based on the application of 

the forestry law (non-spatially) as well as the state of the landscape, and not only 

on the extrapolation of past trends. In addition, the scenarios are spatially explicit, 

which allow identifying the spatial pattern of change and the possible critical areas 

of change in forest cover. Finally, this study contributes to the understanding of 

the future fragmentation of the forest cover. Therefore, the current decisions in 

the field of forest management and land use/land cover influence the future of our 

forests and can probably be represented in one of the three proposed scenarios. 
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                                                       ABSTRACT 

A MULTIVARIATE GEOMORPHOMETRIC APPROACH TO PRIORITIZE 

EROSION-PRONE WATERSHEDS 

BY: 

M. C. JESÚS ALEJANDRO PRIETO AMPARÁN 

Soil erosion is considered one of the main degradation processes in 

ecosystems located in developing countries. In northern Mexico, one of the most 

important hydrological regions is the Conchos River Basin (CRB) due to its 

utilization as a runoff source. However, the CRB is subjected to significant erosion 

processes due to natural and anthropogenic causes. Thus, classifying the CRB’s 

watersheds based on their erosion susceptibility is of great importance. This study 

classified and then prioritized the 31 watersheds composing the CRB. For that, 

multivariate techniques such as principal component analysis (PCA), group 

analysis (GA), and the ranking methodology known as compound parameter (Cp) 

were used. After a correlation analysis, the values of 26 from 33 geomorphometric 

parameters estimated from each watershed served for the evaluation. The PCA 

defined linear-type parameters as the main source of variability among the 

watersheds. The GA and the Cp were effective for grouping the watersheds in 

five groups, and provided the information for the spatial analysis. The GA 

methodology best classified the watersheds based on the variance of their 

parameters. The group with the highest prioritization and erosion susceptibility 

included watersheds RH24Lf, RH24Lb, RH24Nc, and RH24Jb. These watersheds 

are potential candidates for the implementation of soil conservation practices. 
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                                                      RESUMEN 

A MULTIVARIATE GEOMORPHOMETRIC APPROACH TO PRIORITIZE 

EROSION-PRONE WATERSHEDS 

POR: 

M. C. JESÚS ALEJANDRO PRIETO AMPARÁN 

Doctor en Philosophia de Recursos Naturales 

Secretaría de Investigación y Posgrado 

Facultad de Zootecnia y Ecología 

Universidad Autónoma de Chihuahua 

Presidente: Dr. Alfredo Pinedo Alvarez 

La erosión del suelo se considera uno de los principales procesos de 

degradación de los ecosistemas, principalmente en los países en vías de 

desarrollo. En el norte de México, una de las regiones hidrológicas más 

importantes es la Cuenca del Río Conchos (CRC) debido a su utilidad como 

fuente de escorrentía. Sin embargo, la CRC está sometida a importantes 

procesos de erosión por causas naturales y antropogénicas. Por lo tanto, es de 

gran importancia analizar los procesos de erosión que pertenecen a la CRC. Este 

estudio clasificó y priorizó las 31 cuencas que componen la CRC en función de 

su susceptibilidad a la erosión. Para ello, se utilizaron técnicas multivariadas 

como el análisis de componentes principales (ACP), el análisis de grupos (GA) y 

la metodología de clasificación conocida como parámetro compuesto (Pc). 

Después de un análisis de correlación, los valores de 26 de 33 parámetros 

geomorfométricos estimados de cada cuenca sirvieron para la evaluación. El 

ACP definió los parámetros de tipo lineal como la principal fuente de variabilidad 
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entre las cuencas hidrográficas. La AG y el Pc fueron efectivos para agrupar las 

cuencas en cinco grupos, y proporcionaron la información para el análisis 

espacial. La metodología de la AG clasificó mejor las cuencas en base a la 

varianza de sus parámetros. El grupo con la mayor prioridad y susceptibilidad a 

la erosión incluyó las cuencas hidrográficas RH24Lf, RH24Lb, RH24Nc, y 

RH24Jb. Estas cuencas son candidatas potenciales para la implementación de 

prácticas de conservación de suelos. 

Palabras clave: Priorizacion; parámetros geomorfometrícos; parámetro 

compuesto; distribución geoespacial; SIG. 
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                                                   INTRODUCTION 

Soil erosion is considered one of the most important degradation 

processes in the world (Alexakis et al., 2013; Gansari et al., 2015). The soil 

resource is limited and its wide use is of utmost importance; it sustains 

biogeochemical processes and is the habitat for a great diversity of 

microorganisms (Gajbhiye et al., 2015). Sustained soil development, 

conservation, and restoration is one of today’s main challenges for humankind. 

Hydric erosive processes affect the fertile soil layer, which is a key factor 

in the primary production of ecosystems (Gutierrez et al., 2004). The production 

of goods and satisfiers for the population such as wood, food, fiber, fodder, water, 

and recreational areas, among others, in addition to industrial expansion and the 

need for infrastructure facilities, have increased land-use/land-cover changes, 

increasing the pressure over the soil (Biswas et al., 1999). This has caused 

experts to pay more attention to the growing trend of soil erosion and the 

importance of water and soil conservation for achieving sustainable development. 

Integrated watershed management is an alternative for soil management 

(Adhami and Sadeghi, 2016; Malik et al., 2019; Robinne et al., 2019). Watersheds 

are one of the spatial units that are used for the planning and management of soil 

resources (Khosravi et al., 2018). Management implies the characterization of the 

ecosystems inside the watershed and the understanding of the relationships 

between uplands, lowlands, land use/land cover, geomorphic processes, slope, 

and soil (Chen et al., 2011; Rahaman et al., 2015). In watershed management, 

erosion control is one of the main components (Gajbhiye et al., 2015). Thus, the 

hydrological planning and monitoring of a watershed is important for the 
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development of environmental policies (Sharma et al., 2014). In this sense, the 

quantification of the watersheds’ characteristics is fundamental to understanding 

their dynamics and degradation levels. This knowledge serves to define and 

implement strategies to prevent soil erosive processes and promote the 

conservation and restoration of watersheds (Keesstra et al., 2016). 

Morphometry is used in the analysis of the watershed configuration 

(Clarke, 1996). Such methodology was developed by Horton (1945) and then 

modified by Strahler (1964), and provides information on the behavior of the basin 

(Singh et al., 2014). It is an important tool for identifying and prioritizing eroded 

watersheds (Nautyyal, 1994). 

Nevertheless, monitoring soil erosion in situ is costly and time consuming 

in large watersheds. Thus, the analysis of geomorphometry is often carried out 

based on geographic information systems (GIS, Shrimali et al., 2001; Thakker 

and Dhiman, 2007; Sharma et al., 2010; Viramontes-Olivas et al., 2008; Tilahun 

et al., 2014). On a spatial scale, geomorphometric parameters, i.e., the Gravelius 

compactness coefficient (Zavoianu, 1985) and elongation ratio (Shumm, 1956), 

among others, are important to know the hydrological configuration of 

watersheds. The relationships among these parameters are useful for developing 

hydrological models, which allow prioritizing watersheds based on their condition, 

such as erosion susceptibility. To determine the aforementioned relationships, 

statistical methods, such as multivariate techniques, have been widely used 

worldwide (Saha et al., 2012; Sharma et al., 2013). For instance, Gavit et al. 

(2016) characterized 13 geomorphometric parameters in 11 watersheds located 

in the Godavari river in Maharashta, India. Youssef et al. (2011) estimated the 
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erosion risk by using remote sensing technology, GIS, and geomorphometric 

parameters in 11 watersheds located in Sinai, Egypt. Makwana and Tiwari (2016) 

used seven geomorphometric parameters to characterize 19 watersheds in the 

region of Gujarat, India. Sharma et al. (2014) applied the multivariate technique 

of principal component analysis (PCA) to 13 geomorphometric parameters from 

eight watersheds located in the Madhya district, India. Meshram and Sharma 

(2017) and Farhan et al. (2017) used PCA to analyze the geomorphometric 

parameters of a group of watersheds located in the Shakkar Catchment River in 

India and Jordan. 

A large number of shape, relief, and hydrological parameters are 

associated with watershed geomorphometry (Bach et al., 2003; Sanderson et al., 

2012). The statistical techniques of PCA and group analysis (GA) (Miranda et al., 

1996; Castillo-Rodriguez et al., 2010; Bateyneh and Zumlot, 2012; Oketola et al., 

2013; Tritsch et al., 2016; Prieto-Amparán et al., 2019), as well as multivariate 

analysis of variance (MANOVA) and the ranking methodology known as 

compound parameter (Cp) (Altaf et al., 2014) have been widely used in recent 

years for the analysis of environmental data from watersheds. These techniques 

assist with analyzing the spatial variability of watersheds, their structure, as well 

as the relationships existing among them. 

The most important basin in the state of Chihuahua, as a runoff source 

(Montero-Martínez and Ibáñez-Hernandez, 2017), is the Conchos River Basin 

(CRB). Yet, this basin has experienced water stress conditions during the past 

years. According to Ordoñez (2017), approximately 8000 km2 (11.8 %) of the 

basin high lands present strong erosion problems, which could impact waterflow 
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and water quality. In these high lands, deforestation and land-use/land-cover 

changes had contributed to reduce the amount of infiltrated water, impacting on 

groundwater availability (Montero-Martínez and Ibáñez-Hernandez, 2017). In the 

low lands of the basin, agriculture consumes 90 % of the water harvested in the 

basin. Other consumers include the industrial and domestic sectors (Mahlknecht 

et al., 2008; Montero-Martínez and Ibáñez-Hernandez, 2017). In addition, the 

international water trade between Mexico and the U.S. from 1944 commands 

Mexico to deliver annually from this basin a total of 432 × 106 m3 of water to the 

U.S. (Sánchez, 2006). Therefore, specific knowledge about water management 

and the status of the basin’s soil erosion is required to implement strategies to 

solve water-related problems and to promote the sustainable development of the 

region. 

The objective of this study was: (1) to describe the behavior of the 31 

watersheds located along the CRB in the state of Chihuahua, Mexico, based on 

the values of their geomorphometric parameters; (2) to spatially classify the 31 

watersheds into groups; and (3) to prioritize the groups of basins according to 

their erosion susceptibility. For the grouping, multivariate techniques and the 

compound parameter (Cp) were used and their efficacy compared. 
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                                        MATERIALS AND METHODS 

Study Area 

The CRB is located in the state of Chihuahua and Durango, Mexico, and is 

part of the 24th Rio Bravo-Conchos Hydrological Region (CONAGUA, 2001) 

(Figure 1). The basin has an area of 67,800 km2 (Nuñez Lopez et al., 2014), with 

an altitudinal distribution ranging from 841 m to 2348 m (Viramontes-Olivas et al., 

2008). It presents a diversity of climates ranging from temperate in the upper, 

semi-arid in the middle, and arid in the lower parts of the basin (Aboites-Aguilar, 

2002). The physiography of the upper basin belongs to the mountainous zone 

made up of temperate forests dominated by species of pines and oaks. The 

middle part of the Altiplano or central valleys is made up of transition zones where 

oaks and bushes are present. Regarding the lower part, it belongs to the arid 

region and is made up of shrublands and grasslands (INEGI, 2014). The basin 

has a precipitation regime from June to September, with July and August being 

the wettest months, and fluctuating from 200 mm to 700 mm (Nuñez Lopez et al., 

2014). 

Data 

Data of the CRB was obtained from the online GIS source of CONABIO 

(2019). Likewise, the data of the 31 watersheds composing the CRB (Figure 2) 

were obtained from the Watershed Water Flows Simulator (SIATL, 2019). The 

relief and hydrology type parameters were estimated by processing the necessary 

data from a Digital Terrain Model (DTM), with a resolution of 15×15 m, 

downloaded from INEGI (2019). The values of the basic parameters from the 

watersheds were obtained by using the Hydrology tool (Hamdy et al., 2016) of  
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Figure 3. (a) Land-use/land-cover types of the Conchos River Basin (CRB), (b) 
Delimitation of the 31 watersheds of the CRB, (c) Location of the CRB 
in Mexico. 
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ArcMap© 10.3 (ESRI, Redlands, CA, USA; https://wwwesri.com/en-us/home). The 

values of the shape, relief, and linear type parameters were calculated from the 

equations listed in Table 1. 

Basic parameters include the area (A), perimeter (P), watershed length 

(Lb2), stream order (u), main channel length (Lc), all channel lengths (Lu), and 

contour length (Li). The area and perimeter are the most important parameters of 

the watersheds to understand their hydrological design and reflect the volume of 

water that can be discharged in a rainfall event (Patel et al., 2013). 

Shape parameters include the Gravelius compactness coefficient (Cc), 

elongation ratio (Re), shape factor (Rf), elongation index (Ia), unit shape factor 

(Ru), and circularity ratio (Rc). The Gravelius compactness coefficient is the 

relationship between the perimeter of the watershed and the perimeter of a circle 

of area equal to that of the watershed (Zavoianu, 1985). Low values of the 

Gravelius compactness coefficient, shape factor, and elongation index indicate a 

more elongated watershed, while high values correspond to a less elongated 

watershed. Watersheds with less elongated shapes have a shorter maximum flow 

duration, while elongated watersheds correspond to watersheds with longer flow 

duration (Zavoianu, 1985). The elongation ratio is the diameter of a circle with an 

area equal to that of the watershed divided by the length of the watershed 

(Meshram et al., 2017). Those watersheds with values close to or greater than 

the unit correspond to flat watersheds, while values that move away from the unit 

are watersheds with pronounced relief (Shumm, 1956). The shape factor is the 

relationship between the area and the length of the watershed (Horton, 1945). 

The elongation index is also a relationship between the length and width of the  
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Table 1. Geomorphometric parameters. 

Geomorphometric 
Parameter 

Equation References 

Basic Parameters 1 

Area (A) A = Watershed surface area [km2] Horton [15] 

Perimeter (P) P = Watershed perimeter [km] Horton [15] 

Length (Lb2) Lb2 = Watershed length [km]  

Stream order (u) u = Stream order [unitless] Strahler [16] 

Main Channel Length (Lc) Lc = Main flow channel length [km]  

All Channel Lengths (Lu) 
Lu = Length of all the flow channels in the watershed 

[km] 
Horton [15] 

Contour Length (Li) Li = Contour lines’ length [km]  

Number of Flow Channels 

(Nu) 
Nu = Number of flow channels [unitless]  

Number of First-Order Flow 

Channels (No1) 

No1 = Number of total first-order flow channels in the 

watershed [unitless] 
 

Maximum Height (Hmax) Hmax = Watershed maximum height [m]  

Minimum Height (Hmin) Hmin = Watershed minimum height [m]  

Medium Height (Hmed) Hmed = Watershed medium height [m]  

Shape Parameters 

Gravelius Compactness 

Coefficient (Cc) 
Cc = P/2√πA Zavoianu [24] 

Elongation Ratio (Re) Re = 1.1284 (√A/Lc) Schumm [25] 

Shape Factor (Rf) Rf = A/Lb2 Horton [15] 

Elongation Index (Ia) 
Ia = Lb2/W 

where: W = watershed width (Km) 
Horton [15] 

Unit Shape Factor (RU) RU = Lb2/A0.5 Horton [15] 

Circularity Ratio (Rc) Rc = 4πA/P2 Miller [56] 

Relief Parameters 

Mean Watershed Slope (J) 
J = (ΣLi E/A)×100 

where: E = equidistance among contour lines (km) 
Horton [15] 

Massivity Coefficient (tgα) tgα = Hmed/A  
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Relief Relationship(Rh) Rh = Hmax/Lb Schumm [25] 

Relative Relief (Rr) Rr = Hmax/P Schumm [25] 

Orographic Coefficient (Co) Co = Hmed × tgα  

Linear parameter 

Drainage Density (Dd) Dd = ΣLu/A Horton [15] 

Mean Slope of the Main 

Channel (j) 
j = (Hmax − Hmin)/Lc×100 Horton [15] 

Mean Distance (Am) Am = Lc/(√A) Horton [15] 

Sinuosity of the Main Flow 

Channel (Scp) 
Scp = Lc/Lb2 Mueller [57] 

Kirpich Concentration Time 

(TcK) 
TcK = 0.066(Lb2/j)0.77 Kirpich [58] 

Average Peak Flow (Qp) Qp = 43A0.522 Sen [59] 

Texture Ratio (T) T = Nu/P Horton [15] 

Rivers Frequency (Fu) Fu = Nu/A Horton [15] 

Resistance Number (Rn)  Rn = Hmax×Dd Schumm [25] 

General Flow Length (Lo) Lo = 1/2×Dd Schumm [25] 

Drainage Intensity (Di) Di = Fu/Dd Faniran [60] 

 

1 The basic parameters were calculated with the GIS software. 
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watershed (Horton, 1945). The unit shape factor is the relationship between the 

length and the area of the watershed. Values less than 2 indicate that they have 

weak flood discharge periods, while values greater than 2 indicate that their flood 

discharge is strong (Makwana et al., 2016). The circularity ratio is defined as the 

relationship between the area and the perimeter of the watershed. If the circularity 

of the watershed is low, then discharge will be slow, and the susceptibility to 

erosion will be low (Patel et al., 2013). 

Relief parameters include the mean watershed slope (J), massivity 

coefficient (tgα), relief ratio (Rh), relative relief (Rr), and orographic coefficient 

(Co). The mean watershed slope indicates the degree of the terrain roughness. 

As the slope increases, the watershed will be prone to erosion. The massivity 

coefficient represents the relationship between the mean watershed height and 

its surface area, which is expressed as a percentage. Small values of the 

massivity coefficient correspond to very mountainous watersheds, while large 

values correspond to watersheds from moderately mountainous to flat. The relief 

ratio is directly related to the slope of the currents and the watershed surface, 

being an indicator of hydrological processes and erosion. The relief ratio, similar 

to the relative relief, has a direct correlation with the watershed erosion processes 

(Shumm, 1956). 

Linear parameters include drainage density (Dd), mean slope of the main 

channel (j), mean distance (Am), sinuosity of the main channel (Scp), Kirpich 

concentration time (Tc), average peak flow (Qp), texture ratio (T), rivers frequency 

(Fu), resistance number (Rn), general flow length (Lo), and drainage intensity (Di). 

High drainage density values indicate a high current density, and therefore a rapid 
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response to precipitation events (Agarwal et al., 2009). The mean slope of the 

main channel indicates the slope of the longest channel in the watershed. The 

high values of this parameter indicate that sediment flow and entrainment will 

quickly exit the watershed (Horton, 1945). The sinuosity of the main channel 

indicates the velocity of flow movement in the channels. The lowest values of 

sinuosity correspond to channels where the flow travels at greater speed, whereas 

the channels with the highest values of sinuosity indicate the slow movement of 

the flow (Muller et al., 1968). The Kirpich concentration time is the time when a 

drop of water falls at the furthest point until it reaches the exit point (Kirpich, 1940). 

Average peak flow is defined as the mean maximum amount of water passing 

through a specific section (Sen, 2008). The texture ratio corresponds to the 

relationship between the total number of streams and the watershed perimeter. 

Rivers frequency represents the total number of streams of all orders per unit area 

(Horton, 1945). The resistance number is used to measure the flood potential of 

rivers. It has a direct relationship with erosion, where increasing its value would 

represent an increment in erosion susceptibility (Horton, 1945). 

Watershed’s Description and Classification 

Prior to the watersheds’ classification, their geomorphometric parameters 

were correlated (Dillon and Goldstein, 1984; Adhami and Sadeghi, 2016). 

Correlation indicates when part of the information contained in a set of 

geomorphometric parameters is also contained in the remaining ones (Meshram 

and Sharma, 2017). That served to reduce the number of parameters included in 

the subsequent analysis. 
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To describe the variability of the geomorphometric parameters, principal 

component analysis (PCA) was performed. The technique of PCA reduces the 

data dimensionality, simplifies the dataset, and makes it easier to explain through 

a set of new principal components (PCs, Jollifie, 2002; Yidiana et al., 2010). The 

first principal component is the linear combination of the original geomorphometric 

parameters that contributes the most to the total variance; the second principal 

component, not correlated to the first, contributes the most to the residual 

variance, and so on until the total variance is analyzed. The PCs are orthogonal 

variables that could be obtained by multiplying the original variables, which are 

correlated, with coefficients similar to the ones described in Equation (1):  

𝑧𝑖𝑗 = 𝑎𝑖1𝑥1𝑗 + 𝑎𝑖2𝑥2𝑗 + ⋯ + 𝑎𝑖𝑚𝑥𝑚𝑗  (5) 

where: z represents the coefficient of the component, a represents the weight of 

the component, x represents the measured value of the variable, i corresponds to 

the component number, j represents the sample number, and m represents the 

total number of variables. 

The PCA was applied to the values of geomorphometric parameters to 

calculate the correlation matrix and to obtain the PCs (Bro, 2014). Both the 

correlation analysis and the PCA were performed in the SAS© 9.1.3 software (The 

SAS Institute Inc., Cary, NC, USA, https://www.sas.com/en_us/home.html). Then, 

the PCs were mapped for interpretation. 

For the classification, the first method used for the watersheds was a 

hierarchical group analysis, which was based on the Ward criterion (Ward, 1936). 

The Ward criterion was applied to the GA by using the square Euclidean distance 
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to explore the clustering of the 31 watersheds. The definition of the watershed 

groups was performed based on R2 (Eder, 1994). Finally, a multivariate analysis 

of variance (MANOVA) was used to analyze whether significant multivariate 

differences exist between the groups based on the values of their 

geomorphometric parameters (Johnson, 2007). 

The second classification method considered in this work was the 

compound parameter (Cp). Previous research has employed this approach for 

sustainable watershed planning and management (Altaf et al., 2014). Linear and 

shape parameters have been commonly used for this method, whereas the relief 

and basic parameters were additionally included in this study. Linear 

geomorphometric parameters have a direct relationship with erosion 

susceptibility, where high values are more likely to result where high erosion 

probabilities are present (Nooka Ratman, 2005; Patel et al., 2013). Thus, for 

watershed classification, the highest value of linear parameters was ranked as 1, 

the second highest was ranked as 2, and so on. Conversely, shape parameters 

have an inverse relationship with erosion (Nooka Ratman, 2005; Patel et al., 

2013), and low values are related to high susceptibility to erosion and vice versa. 

Then, the lowest value of the shape parameters was ranked as 1, the next lowest 

value was ranked as 2, and so on. Regarding the relief and basic parameters, the 

highest value was ranked as 1, the second highest value was ranked as 2, and 

so on. After this procedure was completed, the ranked values from each 

watershed were summed and then averaged to produce the Cp of each 

watershed. This average represents the collective impact of all the parameters, 

and is calculated according to Equation 2 (Altaf et al., 2014): 
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𝐶𝑃 =
1

𝑛
∑ 𝑅

𝑛

𝑖=1

 (6) 

where: Cp is the compound parameter, R is the ranked value of each parameter, 

and n is the number of parameters. 

Based on the Cp, the highest priority was assigned to the watersheds with 

the lowest Cp value, the second priority was assigned to the next higher Cp value, 

and so on. Then, the Cp was classified into five categories or groups of erosion 

susceptibility. The categories were defined as: Very High (Group 5), High (Group 

4), Moderate (Group 3), Low (Group 2), and Very Low priority (Group 1), similar 

to classifications made in previous studies (Fajardo et al., 2014). 

Comparison of the Classification Methods 

To compare the grouping methods, the following procedure was followed. 

First, an ANOVA was carried out for each geomorphometric parameter 

(independent variable), and separated for each grouping method. The source of 

variation or class was considered to be the group. Such analyses served to 

determine possible significant differences among the groups within each grouping 

method. After the ANOVA analyses were completed, the grouping method that 

achieved the highest number of significant P-values (α<0.05) was considered the 

most effective for grouping the watersheds of the CRB. 
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                                       RESULTS AND DISCUSSION 

Characterization of Conchos River Basin Watersheds´s 

The values of the basic, shape, relief, and linear-type parameters from the 

31 watersheds used in this study are shown in Table 1. Watershed RH24Ia has 

the smallest area and perimeter with 78.62 km2 and 50.59 km, respectively. 

Meanwhile, the watershed with the largest area and perimeter is RH24Lb, with 

5428.29 km2 and 640.77 km, respectively. The watershed with the highest stream 

order is RH24Kb, while watershed RH24Lb has the longest main channel. First-

order streams do not have tributaries, and their flow depends on the secondary 

surface contributions that converge to them (Patel et al., 2013). The watershed 

with the highest number of channels of order one is RH24Ia, whereas the 

watershed with the lowest number of channels is RH24Jb. The watershed lengths 

vary from 11.17 km to 133 km. Watershed RH24Kb presents the largest 

elongation ratio value, indicating that it is the flattest, while watershed RH24Ib has 

the lowest value for this parameter, indicating that it has the steepest slope 

(Shumm et al., 1956). The values of sinuosity of the main channel vary from 0.05 

km to 4.1 km. The watershed with the shortest Kirpich concentration time is 

RH24Kb, while watershed RH24Lb has the longest. The lowest average peak flow 

value corresponds to watershed RH24Ia, whereas watershed RH24Lb presents 

the highest. The texture ratio values are between 4.98–75.1, which are considered 

as moderate to high values; the low values correspond to watershed RH24Na, 

while the highest value belongs to watershed RH24Lg, so the former is not 

susceptible to erosion, while the latter is.The watershed with the lowest resistance 

value is RH24Na, while the watershed with the highest value is RH24Lg. 
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Correlations and Principal Component Analyses 

The data matrix of the 31 watersheds and the 33 parameters, which 

included the basic shape, linear, and relief type parameters, were analyzed 

through a correlation analysis. A set of parameters showing high correlations were 

identified. From each pair of highly correlated parameters, only one parameter 

was chosen, and the rest were eliminated to reduce the data dimensionality. After 

the reduction, the final number of geomorphometric parameters was 26, as listed 

in Table 2. 

The PCA was performed on the 26 parameters and showed that the first 

five principal components were the most important for explaining the data 

variance (Figure 2). The most important parameter was selected according to its 

contribution to the principal component, as it is shown by the values of the 

eigenvectors (in bold) of the correlation matrix (Table 2). The first five principal 

components accounted for 88.44 % of the total variance of the dataset. The linear 

parameters (hydrology) are the ones mainly explaining the CRB behavior (Table 

3). 

Watershed’s Classification Based on Group Analysis 

Figure 3 shows the dendrogram, resulting from the group analysis (GA) of 

the 31 watersheds. Five groups were identified based on their basic, relief, shape, 

and hydrology-type parameters, and considering a value of R2 = 0.84. Group 1, 

with seven watersheds, has the largest amount of low values for the shape, relief, 

and linear-type parameters, as can be verified in Table 4. Group 2, with eight 

watersheds, presents the lowest average values of drainage density, sinuosity of 

the main channel, and general flow length. Group 3, also with eight watersheds, 
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Figure 2. Classification of 31 watersheds based on the values of five principal 
components resulting from a principal component analysis. Conchos 
River Basin, Chihuahua, Mexico. (a) PC1, (b) PC2, (c) PC3, (d) PC4, 
(e) PC5. PC1 = Principal component 1, PC2 = Principal component 2, 
PC3 = Principal component 3, PC4 = Principal component 4, PC5 = 
Principal component 5. 
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Table 2. Eigenvectors of the correlation matrix. 

GP PC1 PC2 PC3 PC4 PC5 

Lc 0.2678 0.0223 −0.2753 −0.1330 0.0095 

Lb2 0.2345 −0.2721 −0.0327 −0.0059 0.0880 

Li 0.2872 0.0343 0.0149 0.1182 −0.1631 

Lu 0.3014 0.0344 0.1560 −0.1236 −0.0398 

Hmax 0.2170 −0.1034 −0.0543 0.3656 −0.1169 

Hmin 0.0664 −0.0941 −0.1183 0.4424 −0.3506 

Cg 0.1308 −0.2425 0.0677 0.0028 0.2681 

Re −0.0340 −0.1992 0.4039 0.0072 0.0603 

Rf 0.2180 0.1309 0.2002 −0.1898 −0.3142 

Ia 0.0510 −0.3141 −0.1533 0.1096 0.3442 

J 0.1269 0.1467 −0.0457 0.4034 −0.1466 

tgα 0.2759 −0.0721 0.1407 −0.2389 −0.0850 

Dd 0.0720 0.3174 0.1766 −0.0248 0.3345 

j −0.0484 −0.2118 0.4035 0.0593 0.0789 

a 0.1271 0.1028 −0.4225 −0.0973 0.1850 

TcK 0.2483 0.0091 −0.2925 −0.1728 −0.0094 

Scp 0.0694 0.2821 −0.2272 −0.1822 0.0258 

Qp 0.3031 −0.1104 0.0908 −0.0989 −0.1442 

T 0.2642 0.1539 0.1430 0.0413 −0.0230 

Ru 0.0641 −0.3193 −0.1582 0.1261 0.3286 

Fu 0.1737 0.2478 0.1291 0.1961 0.2488 
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Rn 0.2305 0.1724 0.0819 0.2424 0.1779 

Rh −0.2207 0.2512 0.0133 0.1126 −0.0453 

Rr −0.2415 0.1661 −0.0986 0.2273 0.0458 

Lo 0.0720 0.3174 0.1766 −0.0248 0.3345 

Di 0.1911 0.0795 0.0241 0.2992 0.1179 

 

GP = Geomorphometric parameter.  
PC1 = Principal component 1, PC2 = Principal component 2, PC3 = Principal 
component 3, PC4 = Principal component 4, PC5 = Principal component 5. 
Lc = Length of main channel, Lb2 = Length of watershed, Li = Length of contour 
lines, Lu = Length of channels, Hmin = Minimum height, Hmax = Maximum 
height, Cc = Gravelius compactness coefficient, Re = Elongation ratio, Rf = Form 
factor, Ia = Elongation index, J = Mean slope of watershed, tgα = Mass 
coefficient, Dd  = Drainage density, j = mean slope of the main channel, a = 
Medium distance, TcK = Kirpich concentration time, Scp = Sinuosity of the main 
channel, Qp = Average peak flow, T = Texture ratio, Ru = Unit shape factor, Fu 
= River frequency, Rn = Resistance number, Rh = Relief ratio, Rr = Relative 
relief, Lo = General flow length, Di = Drainage intensity.  
Bold letters indicate the dominant coefficient. 
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Figure 3. Dendrogram classifying 31 watersheds by group analysis. Conchos 
River Basin, Chihuahua, Mexico. The red line was drawn to define the 
groups. 
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showed the highest values of elongation ratio, drainage density, mean slope of 

the main channel, and general flow length. Group 4, with four watersheds, has 

the highest values in maximum and minimum height, mean slope of the 

watershed, mean distance, unit shape factor, resistance number, and drainage 

intensity. In this group, the lowest values correspond to the elongation ratio. Group 

5, also with four watersheds, presents the largest amount of high values for the 

basic, shape, relief, and linear-type parameters. The multivariate analysis of 

variance (MANOVA) showed significant differences among the groups of 

watersheds, showing a value of Wilks’ lambda equal to 0.0025, with a value of 

P<0.0001. 

The geospatial distribution of the groups is shown in Figure 4. Group 1 

shows a homogeneous pattern in its distribution, which is concentrated in the 

central part of the study area. In contrast, Group 2 shows a dispersed distribution, 

mainly at the edges of the CRB. Group 3 is distributed in the northern, central, 

and southern parts, and is represented by small clusters of two or three 

watersheds. Group 4 corresponds to watersheds spatially dispersed over the 

basin. The watersheds of these groups are isolated from the other watersheds of 

the same group. Group 5 shows watersheds clustered in the southern part of the 

basin, except for the watershed RH24Jb, which is located in the northern region. 

The GA showed a clustered geospatial pattern for Groups 1, 3, and 5, who share 

characteristics in their parameters and space.  

Watershed’s Classification Based on the Compound Parameter (Cp) 

Considering the 26 geomorphometric parameters selected after the 

correlation analysis was performed, the value of the compound parameter (Cp) 
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Figure 4. Geospatial distribution of watershed groups classified by group 
analysis. Very High (●), High (●), Moderate (●), Low (●), Very Low 
(●). Conchos River Basin, Chihuahua, Mexico. 
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was calculated for the 31 watersheds of the CRB (Figure 5a). The watershed 

RH24Lg received the highest priority (1), followed by the watershed RH24Le (2). 

The watershed with the lowest priority (31) was watershed RH24Kg. A high priority 

is an indicator of a high degree of erosion susceptibility in the watershed. 

The resulting Cp map (Figure 5a) was reclassified into the following five 

categories: Very High, High, Moderate, Low, and Very Low (Figure 5b). The 

spatial distribution of the groups was reclassified by natural breaks (Fajardo et al., 

2014). The watersheds classified as Very High show a homogeneous pattern in 

their distribution in the southwestern part of the watershed. Meanwhile, the 

watershed RH24Jb is isolated in the northwestern part. The High, Moderate, and 

Low classes show a dispersed distribution, with at least two of their watersheds 

clustered in space. The Very Low class shows a homogeneous distribution in 

space in the southeastern part of the study area, with only one dispersed 

watershed (RH24Hf). 

Comparison of the Classification Methods 

Regarding the GA classification method, the results from the ANOVA 

analyses performed on 14 geomorphometric parameters, out of 26, detected 

significant differences among the groups defined by the method. In the case of 

the Cp classification method, the ANOVA analysis of only two parameters 

detected significant differences among the groups defined by this classification 

method (Table 3). 

The prioritization of watersheds, based on susceptibility to erosion, has 

been carried out in different regions of the world (Paul et al., 2012; Darabi et al., 

2014) using different prioritization methods (Rawat et al., 2014). This study 
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Figure 5. (a) Watersheds and their compound parameter (Cp). (b) Geospatial 
distribution of watershed groups by Cp reclassification. Very High 1 
(●), High 2 (●), Moderate 3 (●), Low 4 (●), Very Low 5 (●). Conchos 
River Basin, Chihuahua, Mexico. 
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Table 3. Average values of the geomorphometric parameters by group. 

Gid Lb2 Lc Li Lu Hmin Hmax Cc Re Rf Ia J tgα Dd 

1 46.12 31.31 371.43 1038.50 1495 995 3.22 0.74 20.03 1.69 6.43 0.49 1.97 

2 80.16 65.56 1820.63 2660.91 2489 1415 3.70 0.91 23.28 3.11 13.62 0.79 1.97 

3 102.47 75.16 2765.79 6206.70 2294 1060 3.95 1.99 34.73 2.41 12.07 1.48 2.59 

4 146.56 88.94 5556.08 6201.08 2970 1545 3.86 0.40 30.30 3.10 21.45 1.17 2.36 

5 192.52 99.49 8176.13 12,155.08 2680 1230 4.07 0.44 51.66 2.20 17.31 2.45 2.58 

Gid j a TcK Scp Qp T Ru Fu Rn Rh Rr Lo Di 

1 1.42 1.92 11.74 1.51 194.51 8.83 1.24 2.56 2673.67 67.01 13.48 0.99 1.30 

2 2.44 2.17 18.48 1.37 313.28 16.48 1.69 3.03 4835.28 47.81 11.26 0.98 1.51 

3 3.70 2.18 22.19 1.69 417.90 27.78 1.50 3.86 5915.17 34.49 6.97 1.30 1.51 

4 0.98 2.87 31.18 1.68 433.61 37.17 1.73 4.87 7040.26 34.58 8.63 1.18 2.04 

5 0.82 2.77 42.44 1.94 589.36 49.69 1.44 4.99 6806.71 28.86 5.50 1.29 1.95 

 

Gid = Group identification, 1 = Group 1 (Very low erosion susceptibility), 2 = Group 
2 (Low erosion susceptibility), 3 = Group 3 (Moderate erosion susceptibility), 4 = 
Group 4 (High erosion susceptibility), 5 = Group 5 (Very high erosion 
susceptibility). 

Lc = Length of main channel, Lb2 = Length of watershed, Li = Length of contour 
lines, Lu = Length of channels, Hmin = Minimum height, Hmax = Maximum height, 
Cc = Gravelius compactness coefficient, Re = Elongation elation, Rf = Form 
factor, Ia = Elongation index, J = Mean slope of watershed, tgα = Mass coefficient, 
Dd = Drainage density, j = Mean slope of main channel, a = Medium distance, 
TcK = Kirpich concentration time, Scp = Sinuosity of main channel, Qp = Average 
peak flow, T = Texture ratio, Ru = Unitary shape factor, Fu = River frequency, Rn 
= Resistance number, Rh = Relief ratio, Rr = Relative relief, Lo = Length of 
general flow, Di = Drainage intensity. 
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contributes to the lack of knowledge regarding the susceptibility to erosion in 

northern Mexico. This was assessed by implementing two methods for 

prioritization based on the analysis of a set of 33 parameters, which differ from 

other studies (Biswas et al., 1999; Suji et al., 2015; Malik et al., 2019). The 

inclusion of several geomorphometric parameters and their relationships within 

several connected watersheds enriched the study of their erosion susceptibility. 

In this sense, multivariate techniques have proved to be appropriate methods for 

establishing priorities, reducing the dimensionality of the dataset by losing the 

least amount of information (Prieto-Amparan et al., 2018). 

This study integrated a multivariate analysis of several geomorphometric 

parameters that served to identify those watersheds, which may be prone to 

erosion. That was possible by evaluating the behavior of such geomorphometric 

parameters and representing them in a geospatial basis (Singh et al., 2009; Yunus 

et al., 2014). Their relationships provided significant information about the main 

sources of variability among the studied watersheds (Rawat et al., 2014). Previous 

research studies have reported that topography, geomorphology, and land 

use/land cover are the most important factors in the watershed susceptibility to 

erosion (Adediran et al., 2004; Javed et al., 2009; Kompani-Zare et al., 2011; 

Welde, 2016). In this study, the factors with the greatest influence on the 

hydrological behavior of watersheds and their erosion susceptibility were the 

average peak flow and the all channel lengths, as it has also been found in 

previous studies (Subyani et al,. 2012; Adhami and Sadeghi, 2016).  

The PCA is considered a statistical exploratory technique, whose results 

have helped explain the distribution of environmental attributes (Johnson et al., 
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2007). Results from the PCA were useful to identify the sources of variance, which 

were mainly represented by the dominant parameters influencing the data 

structure. Then, the basin’s hydrological configuration was explained by those 

geomorphometric parameters explaining the greatest portion of the variance 

among the watersheds. The PCA results from this study are consistent with the 

observations made by Meshram and Sharma (2017) and Farhan et al. (2017). 

From the PCA analysis, PC1 and PC2 are mainly influenced by linear 

geomorphometric parameters. Some of the linear parameters with an influence 

on PC1 are the average peak flow. This is shown in Figure 3b, where the lowest 

PC1 coefficients correspond to the watersheds with the lowest mean slope values 

of the small channels. Regarding PC2, drainage density is one of the linear 

parameters with an influence. Watersheds with low drainage density indicate the 

presence of permeable surface material, good vegetation cover, and low relief 

(Harlin and Wijeyawickrema, 1985; Luo, 2000). The map of PC2 (Figure 3b) was 

highly influenced by drainage density, since the watersheds with low values of 

this parameter are located in the south–central part of the study area and grouped 

in such a map. 

PC3 and PC4 are influenced by linear parameters such as mean distance 

and shape parameters such as elongation ratio, as well as topographic 

parameters such as minimum height and mean slope. These factors are 

associated with the main channel, relief, and slopes, among others. In Figure 3d, 

the watersheds with the greatest heights and slopes correspond to the 

watersheds located in a mountainous zone, while the watersheds with the lowest 

elevations and slopes (Rai et al., 2017a) correspond to the arid and semi-arid 
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zones of the state of Chihuahua. Regarding PC5, it is mainly influenced by the 

elongation index (shape parameter) and the general flow length (linear 

parameter). The high values of the elongation index correspond to enlarged 

watersheds, which are related to high drainage densities. A watershed with a high 

drainage density implies a quick hydrological response to rainfall events, while 

non-enlarged watersheds correspond to fan-shaped watersheds, which are 

characterized by short channels (Rai et al., 2017b). 

Group analysis (GA) was one of the methodologies used in this study to 

group and then prioritize the watersheds. It was useful to relate watersheds that 

share the same characteristics based on their geomorphometric parameters. The 

groups delineated by the analysis have a unique combination in terms of their 

geomorphometric attributes (Tritsch et al., 2016). The groups of watersheds follow 

a territorial pattern. Group 1 includes watersheds located in the zones with the 

least slopes, where the predominant economic activity is agriculture. Group 2 and 

3 belong to watersheds located in transition zones because of their moderate 

slopes. Groups 4 and 5 are watersheds with rugged topography, with vegetation 

of shrublands and oak forests. 

The compound parameter (Cp) was the second methodology employed to 

prioritize the watersheds. The value of Cp was calculated for each of the 31 

watersheds composing the CRB (Figure 5a). Based on the value of Cp, watershed 

RH24Hf received the highest priority (1), followed by the watershed RH24Le (2). 

By comparing the results from GA and Cp, Group 4 was identically integrated by 

the two methodologies. This group is characterized by watersheds having the 

highest average values of maximum and minimum height, elongation ratio, 
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elongation index, mean watershed slope, slope of the main channel, and unit 

shape factor. The high values of these parameters correspond to watersheds with 

a high erosion susceptibility (Rai et al., 2017). Conversely, Group 5 was formed 

by watersheds having the highest values of main channel length, watershed 

length, contour length, all channel lengths, Gravelius compactness coefficient, 

shape factor, massivity coefficient, mean distance, Kirpich concentration time, 

sinuosity of the main channel, average peak flow, texture ratio, river frequency 

and resistance number. This coincide with high values of Cp, which correspond 

to watersheds distributed in the southwestern zone of the study area and may 

have a low erosion susceptibility (Patel et al., 2013). 

The two prioritization schemes used in this study gave similar results 

according to the spatial distribution of watershed groups. The prioritization of 

watersheds, obtained through GA and Cp, highlighted those watersheds with 

potential for the implementation of soil and water conservation practices. Based 

on the ANOVA analyses performed to statistically compare the GA and Cp 

methodologies, the former resulted in more effectively classifying the watersheds, 

since it permitted better differentiating the watershed groups. 

Results from the GA show that erosion susceptibility is strongly related to 

linear parameters (surface hydrology) for southwestern watersheds, where steep 

slopes of both the watershed and the main channel influence soil erosion (Tucker 

and Bras, 1998). Watersheds RH24Lg, RH24Le, RH24Lf, RH24Mc, RH24Lb, 

RH24Nc, and RH24Ne have the steepest slopes, making them more prone to 

erosion (Youssef et al., 2011). 
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One of the advantages of using the watershed as a territorial unit is the 

analysis of multiple geomorphometric parameters, which are related to the 

watershed’s hydrological configuration, topography, and shape. Most of the 

watershed surface attributes depend on local topographic conditions (Biswas et 

al., 1999). In this study, the Basin’s altitudinal gradient, a surface attribute, assists 

in exhibiting the contrasts among watersheds groups, while showing a 

homogeneous geographic distribution within them. The linear and shape-type 

parameters are important because of their influence on soil erosion. 

The description and spatial grouping of the 31 watersheds through their 26 

parameters using multivariate techniques proved to be useful to understand the 

main factors that control the variance in the CRB. Prioritization through the two 

types of grouping was also effective in detecting those watersheds susceptible to 

erosion. The proposed methodology for prioritizing watersheds on a geospatial 

basis is a feasible approach for identifying watersheds that are susceptible to 

erosion. However, prioritization with parameters that are based on shape, linear, 

and relief of the watersheds may not be sufficient. Thus, the incorporation of 

information regarding the activities on the territory of the CRB would help to 

improve the efficacy of the classification of watersheds based on their erosion 

susceptibility. Therefore, future research could include socioeconomic attributes 

that contribute to soil loss, such as agriculture (Miranda et al., 1996). Despite the 

limitations of this study, the contribution of this work represents an advance in the 

identification of the watersheds that are most susceptible to erosion in the CRB. 

This in turn contributes to land-use planning, which may help mitigate soil 

degradation processes. 
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                           CONCLUSIONS AND RECOMMENDATIONS 

The application of GA and Cp methodologies allowed integrating a large 

set of geomorphometric parameters, which served to classify watersheds 

according to their characteristics.  

GA more effectively clustered the watersheds of the Conchos River Basin 

than Cp, since the groups formed by GA were more differentiated based on the 

analysis of the watersheds’ geomorphometric parameters. The results of GA 

show that watersheds RH24Lf, RH24Lb, RH24Nc, and RH24Jb might be 

subjected to strong erosion processes, and are potential candidates to be 

subjected to soil conservation practices. 

The present study demonstrates the usefulness of integrating GIS and 

multivariate techniques to prioritize watersheds based on their erosion 

susceptibility. Such an integration approach showed the spatial relationships of 

the different geomorphometric parameters analyzed. Although the present study 

permitted a definition of watershed groups according to the values of their 

geomorphometric parameters and their relation with erosion susceptibility, the 

integration of additional variables in the analysis may provide a more insightful 

classification and thus a more reliable watershed prioritization. Such variables 

could include land use/land cover, soil type, lithology, geomorphology, and 

socioeconomic activities, among others. 
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                                                      ABSTRACT 

SPATIAL ANALYSIS OF TEMPERATE FOREST STRUCTURE: A 

GEOSTATISTICAL APPROACH TO NATURAL FOREST POTENTIAL 

BY: 

M. C. JESUS ALEJANDRO PRIETO AMPARAN 

Forest ecosystems represent an important means of ecosystem services; 

they are key as carbon sinks, water collectors, soil stabilizers, suppliers of great 

biological diversity, among other benefits. In addition, regionalization based on 

forest conditions provides a valuable approach to understanding and analyzing 

spatial patterns, which is useful as a tool for implementation of forest ecosystem 

protection and conservation programs. In this research, the structure of a 

temperate forest in the western Sierra Madre region of Mexico was analyzed and 

characterized. The study unit was the watershed and the analysis used a 

geospatial approach combined with multivariate techniques such as: Principal 

Component Analysis, Cluster Analysis (CA), Discriminant Analysis (DA) and 

Multivariate Analysis of Variance. We evaluated the relationships between 

spectral satellite data, thematic maps and structural forest variables. A total of 345 

watersheds were grouped based on these variables. The grouping of watersheds 

under low, medium and high production conditions was carried out with CA, 

defining 3 groups. The validation of the grouping was performed through DA, 

estimating errors with the restitution method, as well as with the cross-validation 

method. Significant differences were found among the groups. The grouping of 

watersheds provides observable evidence of the variability of the forest condition 

throughout the area. This study allows the identification of forest areas with 
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different levels of productivity and can help to identify levels of vulnerability and 

ecological fragility in natural forests in temperate zones. 

Keywords: Multivariate analysis; watershed; Landsat; classification; GIS; forest 

structure; regionalization; spatial clustering. 
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                                                      RESUMEN 

SPATIAL ANALYSIS OF TEMPERATE FOREST STRUCTURE: A 

GEOSTATISTICAL APPROACH TO NATURAL FOREST POTENTIAL 

POR: 

M. C. JESÚS ALEJANDRO PRIETO AMPARÁN 

Doctor en Philosophia de Recursos Naturales 

Secretaría de Investigación y Posgrado 

Facultad de Zootecnia y Ecología 

Universidad Autónoma de Chihuahua 

Presidente: Dr. Alfredo Pinedo Alvarez 

Los ecosistemas forestales representan un medio importante para el 

sustento de servicios ecosistemicos; son clave como sumideros de carbono, 

recolectores de agua, estabilizadores de suelos, proveedores de gran diversidad 

biológica, entre otros beneficios. Además, la regionalización basada en las 

condiciones de los bosques proporciona un enfoque valioso para comprender y 

analizar los patrones espaciales, que es útil como herramienta para la 

implementación de programas de protección y conservación de los ecosistemas 

forestales y sus servicios ecosistemicos que susttentan. En esta investigación se 

analizó y caracterizó la estructura de un bosque templado en la región occidental 

de la Sierra Madre de México. La unidad de estudio fue la cuenca hidrográfica y 

el análisis utilizó un enfoque geoespacial combinado con técnicas multivariantes 

tales como el análisis de componentes principales (ACP), análisis de grupos 

(AG), análisis discriminante (AD) y análisis multivariado de la varianza (AMVA). 

Se evaluaron las relaciones entre los datos de de imagenes espectrales, mapas 
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temáticos y variables forestales estructurales. Un total de 345 cuencas fueron 

agrupadas con base en estas variables. La agrupación de cuencas bajo 

condiciones de baja, media y alta producción se realizó con el AG, definiendo 3 

grupos. La validación de la agrupación se realizó a través de AD, estimando los 

errores con el método de restitución, así como con el método de validación 

cruzada. Se encontraron diferencias significativas entre los grupos. La 

agrupación de las cuencas hidrográficas proporciona evidencia observable de la 

variabilidad de la condición del bosque en toda el área. Este estudio permite 

identificar áreas forestales con diferentes niveles de productividad y puede 

ayudar a identificar los niveles de vulnerabilidad y fragilidad ecológica en los 

bosques naturales de las zonas templadas. 

Palabras clave: Analisis multivariado; cuenca; Landsat; clasificación; SIG; 

estructura del bosque; regionalización; agrupamiento espacial. 
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                                                 INTRODUCTION 

Forest ecosystems provide essential benefits for humanity, including the 

protection of biodiversity, climate regulation, carbon sinks, among others 

(Randolph et al., 2005; Bolton et al., 2017). The assessment of changes in forest 

ecosystems and the understanding of their causes are of great concern. Factors 

that can alter the forest structure such as fire, pests, human activities related to 

the settlement or opening of agricultural land and the extraction of resources, 

generate loss of biomass that influences biogeochemical cycles (Hilker et al., 

2009). Climatic characteristics determine the health of the world´s forest 

ecosystems (Sáenz et al., 2010). With a continental area of approximately two 

million square kilometers, Mexico is one of the richest countries in biodiversity 

(Groombridge and Jenkins, 2000). The temperate forests of Mexico cover 

approximately 32 million hectares, equivalent to 18 % of the territory. In these 

ecosystems we can find a great diversity of associations between pines and oaks 

that are not present in another part of the world (González et al., 2012). These 

forests are mainly composed of conifers and broad-leaved trees, where pine trees 

(Pinus spp.), Oyameles (Abies spp.), Pinabetes (Picea spp., Pseudotsuga spp.) 

and Oak (Quercus spp.) are the dominant species in their composition and 

structure, predominating in the temperate zones of the main mountainous regions 

of the country (Challenger, 1998). 

However, Mexico is also the country with the highest rates of deforestation 

worldwide (Velázquez et al., 2002). Many of its native ecosystems are gradually 

being reduced to small remnants of the original vegetation (Aguilar et al., 2015). 

To ensure the sustainability of forests, we need to characterize their structure 
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(Jupp, 1997). This implies the understanding of the different variables associated 

with the structure of forests (Ludwig et al., 1997). Forest structural variables, such 

as volume or biomass, average diameter and height, are important data needed 

to assess forest resources (Achard et al, 2006; Bonan, 2008). Due to the 

extensive surface of temperate forests that are distributed in Mexico, together with 

a very rugged orography, only a portion of the forest can be sampled (Chambers 

et al., 2007). Under these conditions, it is important to determine the spatial and 

temporal distribution of the forest structure. These actions allow classifying the 

forest coverage according to its natural potential (Zhu et al., 2012). 

The forest condition is defined in this study as the related set of forest 

characteristics determined by the number of trees per hectare, their spectral 

response, their distance from anthropogenic activities, among others. A good 

condition would present a high number of trees per hectare, a low spectral 

response and high distance from anthropogenic activities. At the regional level, a 

feasible procedure to monitor the forest condition on a regular and continuous 

basis is based on satellite data, as well as field information (Franklin, 2001). 

Satellite image data represent a source of key information in the monitoring of the 

forest condition (Wang et al., 2013). The measurement of the forest structure 

through remote sensing reduces costs by covering large areas of land 

(Pflugmacher et al., 2012). In addition, the analyzed data serve to determine the 

health status of the forests (Ingram et al., 2005). There is a great variety of studies, 

where satellite images have been used, as well as field data to characterize the 

structure of the forest (Wolter et al., 2009; Powell et al., 2010; Soenen et al., 2010; 

Dube and Mutanga, 2015). Many of them explain the relationship of the forest 
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structure with the spectral satellite data. Traditionally, the measurement of the 

forest structure considers the forest's dasometric variables. However, there are 

environmental variables that influence the productivity of the forest and represent 

an important element in forest management (Bach et al., 2003; Sanderson et al., 

2012). A large number of biophysical, biological, topographic and anthropogenic 

variables are associated with forest productivity (Vázquez-Quintero et al., 2016). 

To identify these different forest conditions and variability at the regional 

level, regionalization or spatial grouping of data is applied. The process of 

delimitation and classification of areas with homogeneous characteristics 

according to their environmental properties distributed in the forest landscape 

allows the definition of environmental units on a spatial scale. In relation to the 

above, the classification, modeling and interpretation of the monitored data are 

the most important steps in the evaluation of the forest structure. The spatial 

identification of regions with homogeneous characteristics often lacks an 

accepted and clearly articulated theoretical basis. Regions are typically delineated 

by expert criteria, which is sometimes subjective. The spatial continuity of the 

resulting regions is rarely managed quantitatively. In this sense, geostatistical 

multivariate techniques allow us to study the spatial variability of forests, forest 

structure, topographic and biophysical factors, as well as the relationships that 

may exist among these variables. Cluster Analysis (CA), Principal Component 

Analysis (PCA) and Discriminant Analysis (DA) have been used in recent years 

to analyze environmental variables and extract significant information (Pasher 

and King, 2010; Bhuiyan et al., 2011; Batayneh and Zumlot, 2012; Oketola et al., 

2013). The use of these techniques allows defining new variables or groups that 



167 
 

provide information on the spatial variability of forests, (Singh et al., 2004). There 

are few studies that integrate variables in the forest structure using remote 

sensing, biophysical, topographic or proximity (roads, communities) data and their 

interaction (Kalabokidis et al., 2007; Verdú et al., 2012; Tritsch et al., 2016). Such 

studies have been carried out mainly in developing countries like Mexico, where 

there are large gaps of information that can be reinforced with the integration of 

different sources. 

The objective of this study was to analyze the forest condition through 

environmental, topographic, proximity and spectral variables, employing 

multivariate techniques with a geospatial approach in a forest area located in the 

municipality of ‘Guadalupe y Calvo’, Chihuahua, Mexico. 
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                                      MATERIALS AND METHODS 

Study Area 

The study area is located in the municipality of Guadalupe y Calvo, in the 

state of Chihuahua, Mexico, between parallels 107°00' W–26°30' N and 106°30' 

W–26°00' N (Figure 1). The property has an area of 113.73 ha, of which 95.13 ha 

are temperate forests (15 % of the total forest area of the municipality); 42.60 ha 

are exploitable pine and oak woods (Torres et al., 2014). The region is 

characterized by its high number of endemic species, estimated at around 4000 

plant species (Felger and Johnson, 1995). The area is one of the forest regions 

with the highest biodiversity, which supports various environmental services for 

the region. It has a unique and wide system of deep canyons, resulting in a mixture 

of temperate and tropical ecosystems (CONABIO, 2014). The main land uses of 

the property are coniferous and hardwood forests. Forestry is the main productive 

activity, representing 42 % of the income for the inhabitants. It includes the 

extraction of wood and the use of dead wood (Torres, 2012). The second 

productive activity is livestock for self-consumption, which represents 24 % of the 

economy (INEGI, 2003). 

Forest Data 

The data were collected between January and May of 2014 and comprised 

four thousand 0.1-ha circular ground survey plots (Figure 2). Sample 

measurements included tree height recorded using digital hypsometer and tree 

diameter at the breast height (dbh) using a tape. In all plots, the position was 

derived using GPS. Canopy closure status was determined by recording the type  
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Figure 1. Geographical location of the study area: (a) Mexico, (b) “Ejido Chinatu” 
location in Chihuahua, Mexico, (c) “Ejido Chinatu”. Boundary of the 
studied area (—), principal roads (—). 
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Figure 2. Sampling of structural variables of the forest (a), study unit: watershed 
(b). 
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and proportion of shrub stratum vegetation present in each sample plot using a 1-

meter square quadrat split into 4 equal quadrants. Plots with more than 50 % dead 

vegetation on the forest floor were classified as closed canopy. Conversely, those 

with less than 50 % understory vegetation were classified as open canopy. 

Geospatial Data 

We used data from the Landsat 8 OLI satellite. The original bands were 

transformed into physical reflectance tools. The spectral value was extracted 

using a 3×3 window, to minimize the error (Hall et al., 2006). The Normalized 

Difference Vegetation Index (NDVI) and the Modified Soil Adjusted Vegetation 

Index 2 (MSAVI2) were generated (Equations 1 and 2). 

𝑁𝐷𝑉𝐼 =
𝑝𝑁𝐼𝑅 − 𝑝𝑟𝑒𝑑

𝑝𝑁𝐼𝑅 + 𝑝𝑟𝑒𝑑

 (1) 

𝑀𝑆𝐴𝑉𝐼2 =
2𝑝𝑁𝐼𝑅 + 1 − √(2𝑝𝑁𝐼𝑅

)2 − 8(𝑝𝑁𝐼𝑅 − 𝑝𝑟𝑒𝑑

2 
 (2) 

where: 𝑝𝑁𝐼𝑅= near infrared, 𝑝𝑟𝑒𝑑= red band 

The variables considered for the analysis were recorded in the same 

reference system (WGS84) and were converted to raster format with the same 

number of rows and columns using ArcGis 10.3© software (Environmental 

Systems Research Institute, Redlands, CA, USA.; https://www. esri.com/en-

us/home). We used 13 variables for the analysis (Table 1). They were selected 

based on the relationships found in other studies (Miranda et al., 2012; Pérez et 

al., 2012; Bax et al., 2016).  

The variables were measured in 345 basins, delimited within the study area 

(Figure 2). The size of the basins varied from 100 to 2100 ha, with an average of 

424.02 ha and a standard deviation of 274.07 ha. The geographic information  
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Table 1. Variables used in the data analysis. 

Variable Unit Source Acronym 

Average total volume per tree m3 Sampling ATVT 

Number of trees per hectare No Sampling NTPH 

Basal area per hectare m2 Sampling BAPH 

Total volume of trees per hectare m3 Sampling TVTPH 

Average quadratic diameter  Cm Sampling AQD 

Spectral band 3 W/(m2 sr µm) USGS SB3 

Spectral band 7 W/(m2 sr µm) USGS SB7 

Normalized difference vegetation 

index  
Adimensional 

Own 

source 
NDVI 

Modified soil-adjusted vegetation 

index 2 
Adimensional 

Own 

source 
MSAVI2 

Distance to roads m 
Own 

source 
DR 

Distance to water bodies m 
Own 

source 
DWB 

Slope Degrees INEGI Slope 

Mean annual temperature °C CONAGUA MAT 
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system (GIS) was used to delineate basins. A digital terrain model (INEGI, 2005) 

was used for the generation of the basins (Maidment and Djokic, 2000). The 

details of the procedure for the delimitation of watersheds in GIS can be found in 

the study by Hamdy et al. (2016). 

Statistical Analyses 

To identify the relationships between the set of variables (forest and 

geospatial), a correlation analysis was used in the SAS© software, version 9.1.3 

(SAS, 2006). Subsequently, a PCA was used through the routine PRINCOMP 

with the SAS software. This analysis helped to reduce the amount of data; it was 

carried out using Equation 3. 

𝑧𝑖𝑗 = 𝑎𝑖1𝑥1𝑗 + 𝑎𝑖2𝑥2𝑗+.  .  . +𝑎𝑖𝑚𝑥𝑚𝑗  (3) 

where: z represents the component coefficient, a represents the weight of the 

component, x represents the measured value of the variable, i corresponds to the 

number of the component, j represents the number of the sample and m 

represents the total number of variables. 

The basins studied were classified by ascending group analysis (AHC) 

using the Ward criterion (SAS program, CLUSTER rutine). Ward's criterion was 

applied to that of AHC using the square euclideanEuclidean distance to explore 

the grouping of the 345 watersheds. The group definition was determined based 

on the coefficient of determination (R2), the pseudo T2, the Cubic Clustering 

Criterion (CCC) and the pseudo F statistic (Eder et al., 1994). 

Group formation was evaluated based on the original variables using the 

Discriminant Analysis (DA) (Equation 4). It was analyzed to determine whether if 
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tthe variables contribute to discriminatione among the groups. Through this 

analysis, we were able to determine the association of each basin with a group. 

The classification error of the generated DA was made calculated with the 

restitution method as well as with the cross- validation method. Finally, the 

variance was analyzed to verify if there were significant differences between the 

classification and the independent variables as a whole (MANOVA, Johnson, 

1988). 

𝑓 (𝐺𝑖) =  𝑘𝑖 + ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

𝑃𝑖𝑗  (4) 

where: 𝑓(𝐺𝑖) represents the number of groups, 𝑘𝑖 represent an inherent constant 

for each group, 𝑛 number of parameters, and 𝑤𝑖𝑗 weight of the coefficient 

assigned by the DA for a given parameter 𝑃𝑖𝑗. 
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                                     RESULTS AND DISCUSSION 

In the correlation analysis, we found significant positive correlations among 

the variables (Table 2). The evaluation shows different relationship conditions for 

the forest in the study area; this condition allowed us to perform a differential 

characterization as a measure to explain the forest heterogeneity. The PCA 

showed that the first four components explain 71 % of the total variability provided 

by the 13 original variables. The values of the eigenvalue and the accumulated 

variability explain the proportion of the original variables (Figure 3). 

Table 3 shows the characteristics of the first four components and their 

eigenvectors. The variables that contribute the most to the PC1 (weak 

coefficients) are Average total volume per tree, Average quadratic diameter, 

Distance to roads, Slope and Mean annual temperature that represent the forest 

structural and biophysical variables. The moderate coefficients of PC3 correspond 

to Number of trees per hectare, Basal area per hectare and Total volume of trees 

per hectare, which are structural variables of the forest. PC3 has moderate-high 

coefficients for Average total volume per tree, Average quadratic diameter, NDVI 

and MSAVI2, which are part of the structural and spectral forest variables. Finally, 

PC4 has the highest coefficients for the spectral variables Spectral band 3, 

Spectral band 7 and NDVI. The grouping of the sites based on the variables is 

presented in Figure 4. The variables can be grouped into 3: Group 1: Mean annual 

temperature, Distance to water bodies, Average quadratic diameter, Average total 

volume per tree, Slope, Group 2: Spectral band 7, MSAVI2, Distance to water 

bodies, Spectral band 3 and Group 3: Total volume of trees per hectare, Basal 

area per hectare and Number of trees per hectare. 
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Table 2. Matrix of different variable correlations considered in the analysis. 

  ATVT NTPH BAPH TVTPH DQ SB3 SB7 NDVI MSAVI2 DR DWB Slope MAT 

ATVT 1.00             

NTPH −0.41** 1.00            

BAPH 0.10 0.72** 1.00           

TVTPH 0.24** 0.70** 0.89* 1.00          

DQ 0.92** −0.47** 0.11* 0.18* 1.00         

SB3 0.05 −0.06 0.29* −0.05 0.03 1.00        

SB7 −0.17* −0.07 −0.17* −0.18* −0.15* 0.35** 1.00       

NDVI 0.18* −0.05 0.11* 0.12* 0.23** −0.15* −0.40** 1.00      

MSAVI2 0.01 −0.10 −0.05 −0.06 0.07 0.21* 0.58** 0.45** 1.00     

DR 0.03 −0.01 0.03 −0.01 0.08 0.11* 0.21** 0.02 0.22** 1.00    

DWB 0.19* −0.16* −0.04* −0.04 0.24* −0.05 −0.09 0.00 −0.13* −0.02 1.00   

Slope 0.14* −0.07 −0.01 0.01 0.10 −0.06 −0.27** −0.13* −0.41** −0.24** 0.22** 1.00  

ANT 0.19* −0.11* −0.08 −0.04 0.09 0.03 -0.10 −0.31** −0.37** −0.30** 0.47** 0.61** 1.00 

 

ATVT = Average total volume per tree, NTPH = Number of trees per hectare, 
BAPH = Basal area per hectare, TVTPH = Total volume of trees per hectare, 
AQD = Average quadratic diameter, SB3 = Spectral band 3, SB7 = Spectral band 
7, NDVI = Normalized difference vegetation index, MSAVI2 = Modified soil-
adjusted vegetation index 2, DR = Distance to roads, DWB = Distance to water 
bodies, MAT = Mean annual temperature.  
* = Significant P<0.05. 
** = Highly significant P<0.0001. 
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Figure 3. Plot indicating the eigenvalues and their contribution to the total 
variance (a) and explained variance (b). 
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Table 3. Eigenvectors of the correlation matrix. 

 PC1 PC2 PC3 PC4 

ATVT 0.3520 0.0774 0.4682 0.1101 

NTPH −0.3087 0.4643 −0.2010 0.0330 

BAPH −0.1517 0.5470 0.1315 0.2141 

TVTPH −0.0915 0.5614 0.1527 0.0964 

AQD 0.3326 0.0453 0.5076 0.0861 

SB3 −0.1082 −0.0420 0.1070 0.5630 

SB7 −0.2637 −0.2888 0.0276 0.5045 

NDVI −0.0359 0.0715 0.3801 −0.4627 

MSAVI2 −0.2956 −0.2097 0.3703 0.0775 

DR −0.1854 −0.0899 0.2187 0.1282 

DWB 0.3217 0.0119 0.0093 0.1521 

Slope 0.3911 0.1258 −0.2137 0.0936 

MAT 0.4219 0.0606 −0.2338 0.2905 

 

ATVT = Average total volume per tree, NTPH = Number of trees per 
hectare, BAPH = Basal area per hectare, TVTPH = Total volume of trees 
per hectare, AQD = Average quadratic diameter, SB3 = Spectral band 3, 
SB7 = Spectral band 7, NDVI = Normalized difference vegetation index, 
MSAVI2 = Modified soil-adjusted vegetation index 2, DR = Distance to 
roads, DWB = Distance to water bodies, MAT = Mean annual 
temperature.  
PC=Principal Component 
Bold letters indicate the dominant coefficients. 
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The PCA results indicate that most of the variations in forest structure can 

be explained by Average total volume per tree, Average quadratic diameter, 

Distance to roads, Slope and Mean annual temperature. The CA determined three 

groups; 85.2 % of the total variability is explained through the three determined 

groups. Other statistical criteria that reinforced this decision were the pseudo T2, 

the CCC and pseudo F (Figure 5). 

Figure 6 presents the grouping of the basins. A line was drawn near the 

value 0.83 to illustrate the cut-off point that delimits the number of groups 

established according to the euclidean distance. The line layout can vary 

according to the statistical and practical criteria defined, increasing or decreasing 

the number of groups. 

The groups were evaluated and were statistically different (P≤0.0001). 

Group 1 comprises 133 basins, group 2 comprises 140 basins and group 3 

comprises a total of 72 basins (Figure 7). 

Group 1 (Bilbao group, n = 133). They have the lowest average of the 

Average total volume per tree, a moderate value for the number of trees per 

hectare, the smallest value for the basal area per hectare and for the total volume 

of trees per hectare. Regarding the average quadratic diameter, this group has 

an intermediate average value of 21.85 cm. Bands 3 and 7 in this group showed 

intermediate values between the other groups (0.036 and 0.08). The vegetation 

indexes showed higher values than group 1 and 2 for NDVI with 0.55 and 0.18 for 

MSAVI, indicating good coverage with respect to the photosynthetic activity of the 

vegetation. There are great distances to water bodies. The distance to the roads 

is reduced compared with the group 2 and 3. They present the lowest slope  
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Figure 4. Statistical criteria for determining the number of groups to be 
established. CCC = Cubic Clustering Criterion. NC = Number of 
clusters. 
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Figure 5. Group tree of watersheds using cluster analysis based on the coefficient 
of determination (R2). 
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Figure 6. Spatial distribution of the tree clusters defined by group analysis. Group 
1(●), Group 2(●), Group 3(●). Name of colors: Bilbao (●), Limeade (●), 
Inch Worm (●). 
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averages of the three groups. The mean annual temperature is also the lowest of 

the groups. 

Group 2 (Limeade group, n = 140). Basins are characterized by having the 

lowest average value of the average total volume per tree (0.28) and average 

quadratic diameter (0.2157). The highest values are for the number of trees per 

hectare, the basal area per hectare and the total volume of trees per hectare. 

Bands 3 and 7 had the highest values (0.039 and 0.081). The NDVI and the 

MSAVI2 had the smallest values. They have intermediate values towards the 

distance water bodies and the distance to roads, as well as with the slope and the 

mean annual temperature. Due to the characteristic values of the average total 

volume per tree and the average quadratic diameter, a large number of trees with 

small trunks are distributed in these basins. This group can be characterized as a 

group with medium forest productive potential, possibly a young forest. 

Group 3 (Inch Worm group, n = 72). This group is characterized by having 

the highest average value of the average total volume per tree (0.33) and average 

quadratic diameter (0.23). Low values were observed for the number of trees per 

hectare, the basal area per hectare and the total volume of trees per hectare. 

Band 3 and band 7 showed the lowest reflectance values, indicating that they 

have an abundant vegetation cover. In these basins, there are trees with large 

diameters. The NDVI showed the highest value for this group, which can be 

attributed to the high photosynthetic activity. The group of basins has a 

considerable distance to water bodies, indicating that they are remote areas 

without alteration, supported by the distance to the roads. The slope shows the 
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highest values, which may be an indicator of remote areas with rugged 

topography. The mean annual temperature was the highest of the groups. 

The classification of the basins in the groups was evaluated through the 

methods of restitution and cross-validation of the DA. A total of 13 watersheds 

were poorly classified, which resulted in a total error of 0.03. With the method of 

cross-validation, 18 basins were reported as poorly classified with a total error of 

0.04. The group basin map generated in the CA was modified based on the DA 

(Figure 8). Using the results of the cross-validation, the misclassified observations 

were changed to those suggested. 

Finally, the multivariate analysis of variance (MANOVA) showed that there 

are significant differences between basin groups with respect to the original 

variables (Wilk's Lambda = 0.1, Pr> F <0.001), (Table 3). 

The multivariate techniques and spatial information maps were useful to 

interpret the relationship between the multiple variables. The PCA has been 

previously used to examine and interpret the spatial behavior of the forest (Li et 

al., 2006; Zhang et al., 2011). The relationship between variables from field 

sampling, thematic maps, and spectral maps provided significant information on 

the condition of the forest. In this study, four components were needed to explain 

the original data set. The four components showed the behavior of the variables 

in the basins. 

 According to Yidina et al. (2010), in the analysis of dimensionality 

reduction of variables, PC1 usually represents the most important mixture of 

processes. The PCA was useful in the interpretation of qualitative variables. The 

dominant variables in the first main component were average total  
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Figure 8. Spatial distribution of the 3 groups modified by the method of cross-
validation of the Discriminant Analysis. Group 1(●), Group 2(●), Group 
3(●). Name of colors: Bilbao (●), Limeade (●), Inch Worm (●). 
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Table 4. MANOVA test criteria and approximations of F. 

Contrasts Value F-Value DF Pr > F 

All 0.1026 53.84 26 <.0001 

1 vs 2 y 3 0.1389 157.31 13 <.0001 

2 vs 1 y 3 0.8128 5.85 13 <.0001 

3 vs 1 y 2 0.1579 135.37 13 <.0001 

 

DF= degree of freedom,  
Pr > F= p-value of F statics 
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volume per tree, average quadratic diameter, corresponding to forest variables. 

Meanwhile, distance to roads, slope and mean annual temperature, presented a 

strong relationship in the variation of the forest structure in the ‘Ejido Chinatu’ 

community. The above agrees with the study by Castillo-Rodríguez et al. (2010). 

The results of PC1 are consistent with the distribution of vegetation through the 

altitudinal gradient, where temperature and topography play an important role in 

the presence of certain species of panaceas (Rzedowski, 1998; Hlásny et al., 

2017). This is consistent with what was mentioned by Helman et al. (2017), where 

they found that mean annual temperatures influenced forest productivity in 

Mediterranean Mount Carmel forests in Israel. The values of the coefficients within 

the PC1 present similarities that imply the variables have a similar influence on 

the variation of the forest structure. PC2 consisted of the variables number of trees 

per hectare, basal area per hectare and total volume of trees per hectare had 

weak and moderate coefficients. PC2 can be interpreted as a component that 

describes the structure of the forest in relation to the number of trees, the basal 

area and the volume measured per hectare. PC3 was represented by average 

total volume per tree, average quadratic diameter and the spectral indices NDVI 

and MSAVI2. This is consistent with what was mentioned by Kumar et al. (Kumar 

et al., 2018), who related structural variables of the forest such as diameter and 

height with the NDVI, obtaining strong relationships of R2 = 0.90. This component, 

similar to PC1, presents information on the forest structure based on the MSAVI2 

spectral indices. As shown in the variable displacement plot (Figure 4), as the 

average quadratic diameter and the average total volume per tree decrease, the 

MSAVI2 increases. The MSAVI2 spectral index helps us to understand the 
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reflectance emitted by bare soil. In this case, lower average quadratic diameter 

and higher MSAVI2 indicate that a large number of trees are small. 

In agreement with the spatial distribution of the groups shown in Figure 7 

and 8, the grouping by CA presented a homogeneous geographical behavior. 

Group 1 represents the basins that correspond to the central corridor, where forest 

conditions for exploitation could be more accessible. The proximity to the roads is 

an indicator of anthropic presence (Kirby et al., 2006), and the moderate slopes 

for this group of basins make wood extraction more feasible. Espinosa et al., 

(2016) found that topography is related to species richness in dry forests in 

southern Ecuador. This is consistent with the distribution of forest variables across 

the ‘Ejido Chinatu’, where the increase in slopes ranges from flat to very steep 

slopes. The moderate spectral values of bands 3 and 7 indicate there is moderate 

absorption by vegetation and areas that are in a state of recovery. This group 

shows geographical continuity without being very isolated. Group 2 corresponds 

to basins that have average values with respect to almost all the variables, 

considering it as a group of basins that can be under a moderate anthropic 

intervention (transition zone) (Barber et al., 2014). It is divided into several 

homogeneous groups and does not present cases of isolated basins. Finally, 

Group 3 contains basins that, due to their spatial distribution, are further away 

from anthropogenic activities and may not have forest management. The low 

reflectivity in bands 3 and 7, and the high photosynthetic activity represented by 

the NDVI values indicate good vegetation conditions (Mancino et al., 2014). These 

basins are also divided into groups and present an isolated basin. 
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The PCA detects the factors that control the spatial variation of the forest 

structure. Although the PCA is generally considered as a statistical exploratory 

technique (Johnson, 1998), it is capable of being incorporated into the results that 

explain the distribution of a particular landscape (De La Cueva, 2008). GIS-based 

maps have the ability to visualize the spatial relationships between environmental 

data and other attributes, as reported by Facchinelli et al. (2001). The CA was 

useful to identify those basins that are similar in terms of their multiple 

environmental characteristics. Riitters and Coulston (2005) used spatial statistics 

to identify the geographical concentrations of forests located near deforested or 

clear areas. Wang et al. (2016) used the multivariate techniques PCA and CA for 

the delimitation of environmental units. Kupfer et al. (2012) regionalized 2100 

watersheds based on landscape metrics. Trakhtenbrot and Kadmon (2005) used 

the CA for the identification of sites that represent the diversity of species. 

Ramachandra et al. (2016) analyzed information on landscape metrics and social 

variables using multivariate techniques in forests in Uttara Kannada District, India.  

Based on the results of PCA, CA and DA it was possible to understand the 

multivariate relationship of the set of variables. At the same time, with the 

combination of geospatial data and multivariate techniques, it was possible to 

analyze the spatial variability from a point of view of reducing the dimensionality 

of the information. The combination of both was useful to examine patterns in 

common group of variables, allowing us to summarize the multiple relationships 

of variables in geographic regions to use in forest management analysis. 

The identification and delimitation of geographic regions in forests is an 

active area of ongoing research. Technological and methodological advances 
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allow analyzing data from free sources and field information. This study provides 

a perspective for the analysis of this information, helping us to enhance its 

interpretation with a more quantitative approach. Traditional grouping and 

classification methods are widely used, leading to the delimitation of coherent 

forest region classifications from a geospatial point of view. 

From a methodological point of view, the study provides the identification 

of forest regions that are possibly more vulnerable to the effects of anthropogenic 

activities, such as changes in land cover/land use, deforestation, degradation. In 

addition, the methodology serves to identify the forest geographical areas with 

potential for conservation. Such areas are of great importance for the 

development of conservation plans and protection of forest areas, promoted 

mainly by government agencies. 

In particular, the increasingly availability of free and georeferenced data 

sources, such as those from remote sensing, spectral indicators, digital elevation 

models and information derived from them, represents a valuable resource for 

quantitative approaches to zoning. The presentation of geospatial information 

from forest areas allows users to examine the characteristics of each area, their 

variability and their level of productivity. However, the detailed presentation of 

these variations in a broader regional context, where transition zones could be 

detected, is complex but promising for future studies. 
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                           CONCLUSIONS AND RECOMMENDATIONS 

 The use of GIS associated with geostatistical techniques represents a solid 

scientific tool for regionalization and grouping of landscape features. The features 

and regionalization of hydrological basins based on environmental attributes and 

vegetation structures are key to the planning and environmental management of 

the territories. The application of this methodology allows the rapid integration of 

several environmental and biological attributes, which can be grouped according 

to their characteristics. In this way we can define the productive potentials through 

the regionalization analysis. Forest regionalization mapping can benefit a wide 

variety of management, conservation and protection activities. Thus, if a forest 

pattern has been identified in one region as favorable or problematic, it can be 

replicated in another region with similar conditions.  

Multivariate statistical methods, forest structure data, topographies and 

satellites can be useful to group and regionalize forest areas. The multivariate 

geographic information system approach showed the spatial relationships 

between the different variables. Although the results of the present study provided 

preliminary conclusions about the characteristics of the basin groups, more 

studies such as multicriteria evaluation techniques, interpolation methods, among 

others, are needed to obtain a better understanding of the source of variation in 

the forest structure. 
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                                                    ABSTRACT 

MULTIVARIATE AND SPATIAL ANALYSIS OF PHYSICOCHEMICAL 

PARAMETERS IN AN IRRIGATION DISTRICT, CHIHUAHUA, MEXICO 

BY: 

M. C. JESUS ALEJANDRO PRIETO AMPARAN 

Water quality is relevant due to the complexity of the interaction of 

physicochemical and biological parameters. The Irrigation District 005 (ID005) 

located in Chihuahua, Mexico; it is one of the most important districts in 

Chihuahua, Mexico; for that reason, it was proposed to investigate the water 

quality of the site. Water samples were collected in two periods: Summer (S1) and 

Fall (S2). The samples were taken from 65 wells in S1, and 54 wells in S2. 

Physicochemical parameters (PhP) such as Arsenic (As), Temperature, Electrical 

Conductivity (EC), Oxide Reduction Potential (ORP), Hardness, pH, Total 

Dissolved Solids (TDS), and Turbidity were analyzed. The data were subjected to 

statistical principal component analysis (PCA), cluster analysis (CA) and spatial 

variability tests. In both seasons, the TDS exceeded the Mexican maximum 

permissible level (MPL) (35 % S1, 39 % S2). Turbidity exceeded the MPL in S1 

(29 %) and in S2 (12 %). Arsenic was above the MPL for water of agricultural use 

in 9 % (S1) and 13 % (S2) of the wells. The PCA results suggested that most 

variations in water quality in S1 were due to As, pH and Temperature, followed by 

EC, TDS and Hardness; while in S2 to EC, TDS and Hardness, followed by As 

and pH. 

Keywords: spatial distribution; PCA; CA; water quality 
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                                                     RESUMEN 

MULTIVARIATE AND SPATIAL ANALYSIS OF PHYSICOCHEMICAL 

PARAMETERS IN AN IRRIGATION DISTRICT, CHIHUAHUA, MEXICO 

POR: 

M. C. JESÚS ALEJANDRO PRIETO AMPARÁN 

Doctor en Philosophia de Recursos Naturales 

Secretaría de Investigación y Posgrado 

Facultad de Zootecnia y Ecología 

Universidad Autónoma de Chihuahua 

Presidente: Dr. Alfredo Pinedo Alvarez 

La calidad del agua es relevante debido a la complejidad de la interacción 

de los parámetros físico-químicos y biológicos. El Distrito de Riego 005 (ID005) 

ubicado en Chihuahua, México; es uno de los distritos más importantes de 

Chihuahua, México, por lo que se propuso investigar la calidad del agua del lugar. 

Las muestras de agua se recogieron en dos períodos: Verano (S1) y otoño (S2). 

Las muestras se tomaron de 65 pozos en S1 y 54 pozos en S2. Los parametros 

parámetros físico-químicos (PhP) anaizados fueron: arsénico (As), temperatura 

(Temp), conductividad eléctrica (CE), potencial de reducción de óxido (PRO), 

dureza (Dur), pH, sólidos disueltos totales (SDT) y turbidez (Turb). Los datos se 

sometieron al análisis de componentes principales (ACP), análisis de grupos 

(AG) y pruebas de variabilidad espacial. En ambas temporadas, el TDS superó 

el nivel máximo permitido en México (35 % S1, 39 % S2). La turbidez superó el 

limite máximo permisible (LMP) en S1 (29 %) y en S2 (12 %). El arsénico estaba 

por encima de la LMP para el agua de uso agrícola en el 9 % (S1) y el 13 % (S2) 
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de los pozos. Los resultados del ACP sugirieron que la mayoría de las variaciones 

en la calidad del agua en S1 se debían a As, pH y Temp, seguidos por CE, SDT 

y Dur; mientras que en S2 a CE, SDT y Dur, seguidos por As y pH. 

Palabras clave: distribución espacial; ACP; AG; calidad del agua. 
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                                                   ABSTRACT 

MULTIVARIATE AND SPATIAL ANALYSIS OF PHYSICOCHEMICAL 

PARAMETERS IN AN IRRIGATION DISTRICT, CHIHUAHUA, MEXICO 

BY: 

M. C. JESUS ALEJANDRO PRIETO AMPARAN 

Water quality is relevant due to the complexity of the interaction of 

physicochemical and biological parameters. The Irrigation District 005 (ID005) 

located in Chihuahua, Mexico; it is one of the most important districts in 

Chihuahua, Mexico; for that reason it was proposed to investigate the water 

quality of the site. Water samples were collected in two periods: Summer (S1) and 

Fall (S2). The samples were taken from 65 wells in S1, and 54 wells in S2. 

Physicochemical parameters (PhP) such as Arsenic (As), Temperature, Electrical 

Conductivity (EC), Oxide Reduction Potential (ORP), Hardness, pH, Total 

Dissolved Solids (TDS), and Turbidity were analyzed. The data were subjected to 

statistical principal component analysis (PCA), cluster analysis (CA) and spatial 

variability tests. In both seasons, the TDS exceeded the Mexican maximum 

permissible level (MPL) (35 % S1, 39 % S2). Turbidity exceeded the MPL in S1 

(29 %) and in S2 (12 %). Arsenic was above the MPL for water of agricultural use 

in 9 % (S1) and 13 % (S2) of the wells. The PCA results suggested that most 

variations in water quality in S1 were due to As, pH and Temperature, followed by 

EC, TDS and Hardness; while in S2 to EC, TDS and Hardness, followed by As 

and pH. 

Keywords: spatial distribution; PCA; CA; water quality. 
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                                                 INTRODUCTION 

Economic development, industrialization and urbanization, along with 

population growth, lead to an accelerated water consumption, which has 

generated concern for fresh water as a scarce resource (Kengnal et al., 2015; 

Varol and Davras, 2015). Water quality is an important factor that affects human 

health and ecological systems (Qadir et al., 2008). In the rural context, 

groundwater is the support of agricultural irrigation and it is essential for providing 

additional food security resources (Morris et al., 2003) However, food security can 

be affected by pollutants present in the irrigation water, causing serious clinical 

and physiological problems to humans when such pollutants get accumulated in 

large amounts (Sharma et al., 2007; Khan et al., 2008). In general, water quality 

for various applications is determined by its physical characteristics, chemical 

composition, biological parameters and uses (Gupta et al., 2009, Kengnal et al., 

2015). These parameters reflect the inputs from natural sources, including 

atmosphere, soil and particular geological characteristics of each region, as well, 

as anthropogenic influence of various activities (Patil et al., 2012; Brahman et al., 

2013; AlSuhaimi et al., 2017). 

The evaluation of water quality in most countries has become a critical 

issue in recent years (Varol and Davraz, 2015). Water quality is subject to 

constant changes due to seasonal and climatic factors (AlSuhaimi et al., 2017). 

Likewise, spatial variations emphasize the need for water monitoring that provides 

a representative and reliable estimate (Muangthong and Shrestha, 2015). 

Recently, several approaches have been used in for water quality analysis. 

Among them, we can find methods based on modelling, monitoring or statistic 
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techniques (Giri and Qiu, 2016). Modelling tools such as Soil and Water 

Assesment Tool (SWAT) or Agricultural Nonpoint have been employed to 

evaluate water quality at the watershed scale. The statistic techniques commonly 

used for the monitoring of water quality include: Ordinary Least Sqares (OLS), 

Geographic Weighted Regression (GWR) among others. The monitoring 

techniques provide key information for decision making regarding water quality 

(Giri and Qiu, 2016). However, in comparison to these approaches, multivariate 

techniques such as Principal Component Analysis (PCA) and Cluster Analysis 

(CA) could be used for analyzing big water quality databases without losing 

important information (Helena et al., 2000; Singh et al., 2005; Wang et al., 2013). 

Multivariate techniques and exploratory data analyses are appropriate for 

the synthesis of data and its interpretation (Singh et al., 2005). Classification, 

modeling and interpretation of the monitored data are the most important steps in 

the evaluation of water quality (Zhao et al., 2007; Brogna et al., 2017; Boyacioglu, 

2006). The application of multivariate statistical techniques, such as principal 

component analysis (PCA) or Cluster Analysis (CA), has significantly increased 

in recent years, especially for the analysis of environmental data and extracting 

significant information (Bhuiyan et al., 2011; Batayneh and Zumlot, 2012). 

Additionally, these analyses have been reported as effective methods for the 

characterization and evaluation of water quality parameters (Brahman et al., 

2013). PCA and CA are the most common multivariate statistical methods used 

in environmental studies (Oketola et al., 2013).  

The PCA is a mathematical technique used to reduce the dimensions of 

multivariate data and explain the correlation between a large number of variables 



205 
 

observed by extracting a smaller number of new variables (i.e. the principal 

components or PC) (Jackson, 1983; Wunderlin et al., 2001; Loska and Wiechula, 

2003). The CA helps grouping objects (cases) based on homogeneity and 

heterogeneity between groups. The clusters characteristics are not known in 

advance but may be determined in the analysis. Such analysis benefits the 

interpretation of the data by pointing out associations among the studied variables 

(Vega et al., 1998; Al-Bassam, 2006). The application of different multivariate 

statistical techniques aids in the interpretation of complex data matrices to better 

understand the water quality and ecological status of the studied systems Kazi et 

al., 2009; Muangthon and Shrestha, 2015). It also allows the identification of 

possible factors or sources that influence water systems and offers a valuable tool 

for the reliable management of water resources, both in quantity and quality 

(Batayneh and Zumlot, 2012). Previous research has shown that the use of 

multivariate analysis allows defining new variables that provide information on the 

variability of environmental data, as well as on the influence of each variable 

(Chiu, 2000; Medellín-Vázquez, 2003).  

Furthermore, interpolation methods have been employed to map the 

spatial distribution of soil properties (Villatoro et al., 2008; Bhunia et al., 2011), 

heavy metals (Xie et al., 2011; Yan et al., 2015), population characteristics 

(Navarrete, 2012), precipitation (Wang et al., 2014; Núñez et al., 2014), 

radioactive elements (Skeppttröm and Olofsson, 2006; Maroju, 2007), among 

others. Data interpolation offers the advantage of projecting maps or continuous 

surfaces from discrete data (Johnston et al., 2001). Therefore, spatial 

interpolation techniques are essential to create a continuous (or predictable) 
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surface from values of sampled points (Wang et al., 2014). Interpolation is an 

efficient method to study the spatial allocation of elements, their inconsistency, 

reduce the error variance and execution costs (Behera and Shukla, 2015). The 

interpolation methods are useful for identifying contamination sources, assessing 

pollution trends and risks (Markus and McBratney, 2001; Rawlins et al., 2006). A 

growing number of studies have shown the need to determine the spatial 

distribution of pollutants. Spatial data helps to define areas where risks are higher 

and contribute to making the decision to identify the locations where remediation 

efforts should be concentrated (Maas et al., 2010). However, one of the 

characteristics of the spatial distribution of pollutants lies in their frequent spatial 

heterogeneity (Walter, 2002). 

Few studies that combine multivariate techniques and interpolation 

methods have been completed (Chaoyang et al., 2009; Fu and Wei, 2013). The 

selection of the PCA and CA methods is carried out to understand the multivariate 

relationship of the parameters. Many times, the studies are carried out 

univariately. In this study, we used these techniques in a descriptive way, so that 

by visually comparing the results of the group analysis and the interpolations, we 

understood the spatial distribution of the parameters and even more the spatial 

distribution of the CPs. The modeling techniques were not considered for the 

amount of information used necessary to achieve the calibration. The objective of 

the present study was to analyze eight physicochemical parameters (PhP) in 

water samples from wells of the Irrigation District 005 (ID005) in Chihuahua, 

Mexico, perform a data analysis using multivariate techniques to evaluate the PhP 
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contribution in water quality and apply interpolation methods to analyze the spatial 

variation of the PhP. 
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                                         MATERIALS AND METHODS 

Research Area 

The ID005 is located in the south-central region of the State of Chihuahua 

(Figure 1), among the geographical coordinates 105°4’O - 28°30’N, 105°2’O - 

28°30’N, 1054’O - 28°10’N, 105°2’O - 28°10’N. It has an average altitude of 1,156 

meters above sea level. The predominant climate is semi-desert, with an average 

of annual rainfall of 350 mm (Ortega-Gaucin et al., 2009). The ID005 is composed 

by 10 irrigation modules, which are administered by local associations. The district 

is divided into two constituted irrigation units based on infrastructure 

characteristics, to facilitate water distribution (Aguirre-Grijalva, 2003). Each unit is 

managed by a Limited Liability Corporation, that is integrated as follows: 1) The 

first unit called Conchos is composed by irrigation modules 1 to 5 and 12, which 

are mainly supplied by water from La Boquilla dam; 2) The second unit, called 

San Pedro, is integrated by modules 6, 7, 8 and 9, which are supplied by water 

from the Francisco I. Madero dam, groundwater and, to a lesser extent, by water 

from the La Boquilla dam (Ortega-Gaucin, 2012). 

Sampling 

Two different sampling periods were performed in operating wells in the 

studied area during 2017. The first sampling was performed in Summer (S1) and 

the second sampling in Fall (S2) (Figure 2), following the standard procedures in 

NOM-014-SSA1-1993 (SSA, 1993). Two samples of 1 L were collected, one for 

PhP determination, and another for Arsenic (As) determination in which 2 mL of 

nitric acid (HNO3) were added for its preservation for. The samples were 

transported in coolers, taken to the laboratory and stored at 4 °C until their  
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Figure 1. Geographical location of the study area: a) Irrigation District 005 location 

(■), boundary of the studied area (—), water bodies (—), bold numbers 
denote the module number, b) Irrigation District 005 location in 
Chihuahua, Mexico. 
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Figure 2. Sampling maps: a) Summer (Sampling 1 - left) and b) Fall (Sampling 2 

- right). Studied modules (—), sampling points (▲), bold numbers 
denote the module number. 
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analysis. In the first period, samples were collected from 65 wells; while in the 

second period from 54 wells. 

Multivariate Statistical Methods 

For As determination, the samples were filtered with 0.2 mm ash paper 

Whatman No. 41. Subsequently, before the analysis, filtered with 0.45 μm 

Millipore filters. The As quantification was perform on an Atomic Absorption 

Spectrometry, Perkin Elmer AAnalyst 700 to which the FIAS 100 Hydride 

Generator was coupled, by following the standard NMX-AA-051-SCFI-2001 

(SCFI, 2001). The detection limit of the equipment was 3.12 μg/L. The samples 

were analyzed in triplicate using the standard Trace Metals-Sand 1 Number 

CRM048 Sigma Aldrich with a recovery percentage of 99 %. 

Moreover, different physicochemical parameters (PhP) were analyzed: 

Temperature, Electrical Conductivity (EC), Oxide Reduction Potential (ORP), 

Hardness, pH, Total Dissolved Solids (TDS) and Turbidity. These are listed in 

Table 1 along with their respective analytical method. All parameters were 

analyzed in triplicate. Temperature, pH and ORP were determined in situ, the rest 

in the laboratory. 

Spatial Variability of the Physicochemical Parameters (PhP) 

Prior to the multivariate analysis, a Pearson correlation analysis was 

performed to understand the relationships among the PhP. To know the 

magnitude of the relationship between the parameters, the Pearson value is 

classified in 33 % percentiles. The values of Pearson's linear correlation 

coefficient were classified as:  Poor (0.0-0.3), Moderate (0.4-0.6) and Strong  
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Table 1. Physicochemical parameters on water, units, and analytical method.  

Parameter Unit Analytical method 

As mg/L AAS Perkin Elmer Aanalist 700, coupled HG 

FIAS 100 

Temp  oC Potentiometer Hanna portable (in situ) 

EC µS/cm Electrical conductivity meter CYBERSCAN 

ORP mV Potentiometer Hanna portátil (in situ)  

Hardness mg/L Titration net NET (indicator) 

pH Adimensional Potentiometer Hanna portable (in situ) 

TDS mg/L Electrical conductivity meter CYBERSCAN 

Turb NTU Electrical conductivity meter CYBERSCAN 

 
As = Arsenic.  
EC = Electrical Conductivity.  
Turb = Turbidity.  
ORP = Oxide Reduction Potential.  
Temp = Temperature. 
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(0.7-1.0, Simeonov et al., 2003; Jothivenkatachalam et al., 2010). Such analysis 

was performed in the SAS© 9.1.3 software (SAS, 2006). The multivariate analysis 

on the data from the ID005 was carried out by the PCA and CA methods 

(Wunderlin et al., 2001; Jolliffe, 2002). The PCA is a method for pattern 

recognition that attempts to explain the variance of a large set of correlated 

variables (PhP); transforming the data set into a smaller set of independent 

(uncorrelated) principal components (PC). SAS© 9.1.3 software was used to 

describe these patterns. The PCA is a dimensionality reduction technique that 

helps to simplify the data and make it easier to visualize by looking for a PC set 

(Shrestha and Kazama, 2007). The PCs are orthogonal variables calculated by 

multiplying the original correlated variables with a list of coefficients that can be 

described as shown in Equation 1: 

𝑧𝑖𝑗 = 𝑎𝑖1𝑥1𝑗 + 𝑎𝑖2𝑥2𝑗+.  .  . +𝑎𝑖𝑚𝑥𝑚𝑗 (1) 

where: z = the component´s coefficient, a = component weight, x = measured 

value of the variable, i = component number, j = sample number, and m = number 

of variables. 

The CA is an unsupervised pattern recognition technique that describes 

the structure of a data set (Al-Bassam, 2006). The hierarchical grouping is the 

most common approach in which groups are formed sequentially, starting with the 

pair of most similar objects forming groups from the union of these objects. The 

euclidean distance usually gives the similarity between two objects or groups of 

objects (Shrestha and Kazama, 2007). The resulting groups of objects should 

exhibit high internal homogeneity (within a group) and high external heterogeneity 
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(among groups), where grouping is typically illustrated with a dendrogram 

(McKenna, 2003). The dendrogram provides a visual summary of the clustering 

processes, presenting an image of the groups and their proximity with a dramatic 

reduction in the dimensionality of the original data (Ward, 1963). The CA was 

applied to classify the sampling sites by ascending cluster analysis with the Ward 

(Eder et al., 1994) criterion, using the R2 as a measure of explanation of variation 

and pseudo T2 served to confirm the number of groups (Neil, 2002). It is possible 

to plot the pseudo values versus the number of clusters. If the values present a 

sudden change, the value of the group n + 1 that caused the change is a candidate 

for the number of groups to choose (Arlsan and Turan, 2015). The CA was 

performed in the SAS© 9.1.3 software. 

Physicochemical Parameters (PhP) Analysis 

The information of the PhP was used as input data to carry out an 

interpolation. To examine the spatial distribution of the studied variables, the 

interpolation method used was Inverse Distance Weight (IDW), available in 

ArcMap© 10.3 software. The interpolation, through IDW has been widely used to 

map the spatial distribution of water elements (Varol and Davraz, 2015; Ishaku et 

al., 2016; Moreno, 2008). The IDW method uses the existing values that are 

around the area to estimate the concentration of the non-sampled sites. The 

values of the closest observations will have a greater influence than those that 

are further away, i.e. the influence decreases with distance (CONAGUA, 2017). 

Equation 2 shows the algorithm for IDW. 
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𝑍(𝑆0) = ∑ λ ∗

𝑁

𝑖=1

𝑍(𝑆𝑖) (2) 

where: Z(S0) = value to be estimated in the place S0, N = number of observations 

near to the place to estimate, λ= weight assigned to each observation to be used, 

decreases with distance, and Z(Si) = observed value of the place Si. 
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                                         RESULTS AND DISCUSSION 

Analysis of Physicochemical Parameters  

Table 2 shows the results obtained from the analysis of As and the PhP 

analyzed to water samples, the maximum permissible levels (MPL) were 

established according to Mexican regulations for each parameter and the 

percentage of samples exceeding said limit. 

In the two seasons, TDS was the parameter with the highest percentages 

of samples exceeding the MPL of the Mexican regulation (35 % in S1, 39 % in 

S2). Turbidity exceeded the MPL in S1 (29 %) in more samples than S2 (12 %). 

As concentrations were above the MPL of water for agricultural irrigation in 9 % 

(Summer) and 13 % (Fall) of the wells. 

Multivariate Analysis 

The correlation analysis reported the existence of significant positive and 

negative correlations (P>0.05 and P<0.0001) among the values of PhP from the 

first sampling (Table 3). As was moderately correlated with Turbidity, Hardness 

and pH. EC was moderately correlated with TDS, Hardness and ORP. Regarding 

TDS, it was moderately correlated with Turbidity and Hardness. Finally, pH and 

ORP were correlated strongly and moderately, respectively, with Temperature. 

The poor correlation between the other pairs of PhP indicates the presence of 

other sources of variation.  

In S2 (Table 3) it was observed that As was moderately correlated with 

Hardness while it was strongly correlated with pH. The EC was moderately 

correlated with Hardness and strongly correlated with TDS. Likewise, TDS was 

moderately correlated with Turbidity, Hardness and ORP. 
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Table 2. Range of concentrations and maximum permissible levels according to 
Mexican regulations of the PhP analyzed. 

Parameter 
Concentration 

Range S1 
Concentration 

Range S2 
MPL Normative 

Sampling 
1 (%) 

Sampling 
2 (%) 

As (mg/L) ND – 0.338 ND – 0.576 0.100 
CONAGUA, 

2017 
9 13 

Temp (oC) 22.1 – 30.1 22.8 – 27.5 - 
Without 

regulation 
- - 

EC (μS/cm) 13.8 - 1981.6 553.6 - 2600 - 
Without 

regulation 
- - 

ORP (mV) 85.6 - 267.7 98.1 - 306.3 - 
Without 

regulation 
- - 

Hardness 
(mg/L) 

13.3 - 814 0 - 611 500 SSA, 1994 9 5 

pH 7.5 - 9.6 7.3 - 9.0 
6.0 - 
9.0 

CONAGUA, 
2017 

1.5 0 

TDS (mg/L) 0 - 990 0 - 932.3 500 
CONAGUA, 

2017 
35 39 

Turb (NTU) 0 -1000 0.2 - 519 10 
CONAGUA, 

2017 
29 12 

 
As = Arsenic.  
EC = Electrical Conductivity.  
Turb = Turbidity.  
ORP = Oxide Reduction Potential.  
Temp = Temperature. 
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Table 3. Pearson correlation among the PhP in the wells of the ID005. 

Sampling 1 

  As EC TDS Tur Hardness Ph ORP Temp 

As 1.00 
       

EC 0.07 1.00 
      

TDS -0.17 0.625** 1.00 
     

Turb 0.42 -0.01 -0.452** 1.00 
    

Hardness -0.477** 0.493** 0.586** -0.23 1.00 
   

pH 0.441* 0.08 -0.04 0.17 -0.348* 1.00 
  

ORP -0.092* -0.44 -0.17 -0.18 -0.09 -0.398* 1.00 
 

Temp 0.389* 0.327* 0.23 0.13 -0.17 0.827** -0.462* 1.00 

 

Sampling 2 

  As EC TDS Turb Hardness pH ORP Temp 

As 1 
       

EC -0.02 1 
      

TDS 0.08 0.89** 1 
     

Turb -0.14 -0.2 -0.55** 1 
    

Hardness -0.46* 0.54** 0.45* -0.15 1 
   

pH 0.77** -0.14 -0.03 -0.07 -0.60** 1 
  

ORP 0.03 -0.33* -0.41* 0.32* -0.13 -0.04 1 
 

Temp -0.25 -0.19 -0.06 -0.21 0.04 -0.29* -0.04 1 

 
As = Arsenic.  
EC = Electrical Conductivity.  
Turb = Turbidity.  
ORP = Oxide Reduction Potential.  
Temp = Temperature.  
* =Significative P>0.05.  
** = Highly significant P >0.0001. 
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Principal Components Analysis (PCA) 

The assumption that the parameters are linearly related was verified, then 

the PCA was carried out to explore the relationships among the eight PhP. The 

first four PCs in S1 explained 87 % of the variance (Table 4). In S1, PC1 

contributed with 34 % of the variance, PC2 with 30 %, while PC3 and PC4 

contributed with 12 % and 9 %, respectively. The dominant PhP in PC1 were As, 

pH and Temperature. Considering Table 3, there is a significant correlation 

between As and pH (r = 0.44, P<0.05). In PC2, the coefficients that contributed 

the most were EC, TDS and Hardness. The parameters correlated were: EC and 

TDS (r = 0.625, P<0.0001), EC and Hardness (r = 0.493, P<0.0001) and TDS with 

Hardness (r = 0.586, P<0.0001). The PC3 was influenced by Turbidity and PC4 

by As and ORP. 

Regarding S2, 86 % of the variance was explained by considering four PCs 

(Table 4). The components contributed with 35 %, 24 %, 16 % and 9 % to PC1, 

PC2, PC3 and PC4, respectively. The PC1 was influenced by EC, TDS and 

Hardness with weak coefficients. These parameters strongly and moderately 

correlated as follows: EC and TDS (r = 0.89, P<0.0001), EC and Hardness (r = 

0.54, P<0.0001), Hardness and TDS (r = 0.45, P<0.05). The PC2 was influenced 

by As and pH, with moderate and highly correlated coefficients (r = 0.77, 

P<0.0001). The PC3 explained the Turbidity and Temperature variability, with 

moderate to strong coefficients and PC4 was influenced by ORP. In Table 3 it was 

observed that there is a highly significant correlation of EC with TDS and 

Hardness, which indicates that these three components explain a large amount 

of variation in the study area.   
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Table 4. Eigenvectors and eigenvalues of the PhP. 

PhP 
Sampling 1 Sampling 2 

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

As 0.441 -0.11 0.108 0.661 -0.22 0.56 0.00 0.24 

EC 0.066 0.533 0.312 0.261 0.49 0.21 0.31 0.07 

TDS -0.13 0.544 -0.19 0.318 0.50 0.32 0.03 0.17 

Turb 0.305 -0.19 0.727 0.011 -0.28 -0.27 0.53 -0.31 

Hardness -0.33 0.424 0.263 -0.03 0.47 -0.23 0.20 0.16 

pH 0.518 0.1 -0.34 -0.16 -0.28 0.55 -0.02 -0.03 

ORP -0.29 -0.33 -0.26 0.604 -0.29 -0.22 0.26 0.87 

Temp 0.48 0.271 -0.27 -0.04 0.06 -0.26 -0.72 0.17 

Eigenvalue 2.708 2.473 1.031 0.757 2.8 2.15 1.24 0.75 

Varibility  0.338 0.309 0.128 0.094 0.35 0.26 0.15 0.09 

Cumulative 0.338 0.647 0.776 0.871 0.35 0.62 0.77 0.86 

 
As = Arsenic.  
EC = Electrical Conductivity.  
Turb = Turbidity.  
ORP = Oxide Reduction Potential.  
Temp = Temperature.  
PC = Principal Component. 
Bold letters indicate the dominant coefficients. 
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The grouping of the sites is shown in the displacement plane of the first two 

PCs (Figure 3). The PhP for S1 and S2 were organized into 4 groups. Group 1: 

As, pH and Temperature; Group 2: EC, TDS and Hardness; Group 3: Turbidity; 

and Group 4: As and ORP. In regards to S2, Group 1 was composed of: Hardness, 

EC, TDS; Group 2: As and pH; Group 3: Turbidity and ORP; and Group 4: 

Temperature. Gebreyohannes et al. (2015) determined in their area of study that 

TDS, Hardness and EC were positively associated and that these in turn were 

negatively associated with pH and Turbidity. 

The comparison plots of PC1 vs PC2 in each sample indicate the 

displacement through components 1 and 2. These components, together explain 

more than 60 % of the total variation. On the one hand, As, pH and Temperature 

in S1 move to the right side, indicating its dominance in PC1. While in S2, only As 

and pH remain dominant in PC1. On the other hand, observing the displacement 

in PC2 in S1 the variable with the greatest influence is ORP and in S2 it is 

Hardness, Temperature, Turbidity and ORP. In the particular case of ORP, the 

change indicates that in S1 (spring) only its variation was high with respect to 

PC2, while in S2 (summer) it was a great source of variation for PC1 and PC2. 

The change in the station strongly influences the way in which the parameters are 

expressed in the well water, which explains the displacement of the parameters 

between stations. 

Cluster Analysis (CA) 

The definition of the number of groups was made considering the value of 

R2 and the criterion of pseudo T2. The value of R2 indicated that, with four groups, 

up to 76 % of the variability in S1 was explained, while in S2 with four groups 85%  
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Figure 3. Plot S1 comparison PC1 vs PC2 (Top), Plot S2 comparison PC1 and 
PC2 (Down). 

  



223 
 

was explained. A line was drawn in both dendrograms to confirm the value of R2 

(Figure 4). This line is imaginary and is traced in the dendrogram to support the 

definition of the groups (Güler et al., 2002). The pseudo T2 was useful to reaffirm 

the decision of the four groups, showing a value of 77.3 and 9.2, respectively 

(Neil, 2002). The groups were significantly different based on the MANOVA test 

(F = 25.65, λ of Wilk's = 0.002, P<0.0001).  

In S1, Group 1 was made up of 9 wells; Group 2 was the largest with 38 

wells; Group 3, the smallest with 7 wells and Group 4 included 9 wells. Each group 

was characterized with the average of the variables per group, presented in Table 

5. In S1, Group 1 consisted of high values of As (0.098 mg/L), Turbidity (687.6 

NTU), pH (8.2) and EC (1,117.7 μS/cm), and low values of TDS and Hardness 

(93.8 and 144.3 mg/L, respectively). Group 2 had moderate values with respect 

to almost all PhP, only with a low Turbidity value (3.9 NTU). Group 3 also 

presented moderate values in most of the PhP, with the exception of EC at low 

concentrations (15.3 μS/cm), and Turbidity at high concentrations (295.6 NTU). 

Lastly, Group 4 showed high values of TDS (883.9 mg/L), Hardness (497.4 mg/L), 

EC (1,773.4 μS/cm) and Temperature (25.1 °C), while the lowest values 

corresponded to Turbidity (38.0 NTU). The remaining PhP had moderate values. 

In the S2, Group 1 was the largest with 18 wells; Group 2 was the smallest 

with 6 wells; Group 3 was comprised of 17 wells; and Group 4 of 9 wells. Group 

1 was formed with high Turbidity values (196.1 NTU). Group 2 showed the highest 

values of Turbidity (164.5 NTU) and the lowest values of As (0.005 mg/L) and 

TDS (78.9 mg/L) among all groups. Group 3 showed high values of As (0.106 

mg/L), EC (1.102.5 μS/cm), TDS (563.4 mg/L), Turbidity (157.6 NTU) and pH  
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Figure 4. Dendogram. Grouping of sampling sites according to the PhP of ID005 
for S1 (a) and S2 (b). 
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(8.02). Finally, Group 4 had the highest values of EC (1,779.1 μS/cm), TDS (885.3 

mg/L), Hardness (384.7 mg/L) and the lowest Turbidity (5.2 NTU), pH (7.3) and 

ORP (195.2 mV) values when compared to the other groups (Table 5). 

The spatial distribution of S1 and S2 was observed by linking the database 

derived from the CA with the vector file of wells, using ArcMap 10.3©. In S1, the 

distribution of Group 1 (high values of As, Turbidity and pH) was homogeneous in 

the northern part of the ID005, located in modules 7 and 8. Group 2, with the 

highest number of wells (moderate values of all PhP), included modules 4, 7, 8, 9 

and 3. Group 3 (high Turbidity), was located in module 6, showing a 

homogeneous spatial grouping. Group 4 (high TDS, Hardness and EC) was 

defined in modules 4, 8, 7 and 3, being the group with the greatest geographical 

dispersion. 

In S2, Group 1 (high Turbidity) was homogeneously distributed between 

module 9 and 6. Group 2 (high Turbidity) was placed in module 6, only with one 

observation in module 8. Group 3, with high magnitudes of As, EC, TDS, Turbidity 

and pH, was presented in module 7, with some observations in modules 8 and 4. 

Group 4, with high magnitudes of EC, TDS and Turbidity, was distributed in the 

boundary between module 3 and 4 in the southwest portion of the ID005 (Figure 

5). 

Spatial Variability of Physicochemical Parameters 

The maps of the PhP are shown in Figures 6 and 7. The areas with low 

concentrations are colored in yellow, the blue colored areas represent moderate 

concentrations while the red colored areas represent high concentrations.  

In S1, the PhP As, pH and Temperature showed a similar distribution where  
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Table 5. Average value of the PhP by groups. 
 S1 S2 

G As EC TDS Turb Hardness pH ORP Temp As EC TDS Turb  Hardness pH ORP Temp 

1 0.098 1117.65 93.84 687.63 144.34 8.21 150.29 25.25 0.017 686.111 344.552 8.182 196.074 7.701 231.456 24.796 

2 0.035 832.62 415.06 3.89 208.06 7.98 208.57 24.42 0.005 768.717 78.938 382.933 164.533 7.665 270.156 23.856 

3 0.014 15.25 185.71 295.56 207.03 7.53 230.08 22.59 0.106 1102.486 563.371 5.753 157.647 8.024 210.418 24.170 

4 0.008 1773.36 883.91 38.01 497.41 7.77 138.66 25.07 0.005 1779.137 885.278 5.228 384.678 7.525 195.219 24.203 

 
As = Arsenic.  
EC = Electrical Conductivity.  
Turb = Turbidity, pH = pH, ORP = Oxide Reduction Potential.  
Temp = Temperature. 
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Figure 5. Spatial distribution of the groups in the IDDR005. S1 (left), S2 (right). 
Group 1 (●), Group 2 (■), Group 3 ( ), Group 4 (▲), bold numbers 
denote the module number. 
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Figure 6. Spatial distribution of the PhP in the ID005 for S1. As = Arsenic, EC = 
Electrical Conductivity, pH = pH, ORP = Oxide Reduction Potential. 
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Figure 7. Spatial distribution of the PhP in the ID005 for S2, As = Arsenic, EC = 
Electrical Conductivity, pH = pH, ORP = Oxide Reduction Potential. 
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the highest and moderate concentrations are found in modules 6 and 7. The 

pattern of As (high concentration) may be due to a geological mineralization 

process (Bu et al., 2016), which seems to be present in these modules. Likewise, 

Hardness and TDS show a similar distribution. The highest concentrations are 

predominantly distributed in modules 3, 4 and 5. The EC shows a distribution 

pattern similar to Hardness and TDS but with some variations. The highest 

concentrations prevailed in modules 3, 4, 7 and 8.  

In S2, As and pH showed a similar pattern with high concentrations in the 

northern part of module 7. The values of EC, TDS and Hardness showed a very 

similar spatial distribution in modules 8, 7, 4 and 3, at high concentrations. The 

Temperature and Turbidity PhP presented a similar pattern of high concentrations 

in module 6. Finally, ORP was the only variable that did not show a spatial 

behavior similar to the rest of the PhP.  

The similarities in the spatial distribution among the PhP confirm the results 

of the multivariate analysis, where As-Turbidity, pH-Temperature, Hardness-TDS-

EC and As-pH were grouped in S2, while TDS-EC-Turbidity were grouped in S1. 

In a study conducted by Li and Feng (2012), similarities in the spatial distribution 

of the elements were found. In both, the S1 and S2 samplings, the spatial behavior 

for As, EC, Hardness, ORP, pH and TDS was similar. The PhP that varied were 

temperature and Turbidity. Temperature showed a greater variability in S1 

compared to S2, which may be associated with the variation of the rest of the 

PhP. 

Likewise, the coefficients of each PC of the PhP were used together with 

the geographical coordinates of the wells to generate the interpolation of the PCs 
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(Figure 8). These interpolations spatially indicate the multivariate relationships 

among the PhP.  

In S1, the interpolation of the PC1 coefficients (33 % of the variability 

explained) indicated that in the yellow areas (negative coefficients) low 

concentrations of As existed (0.000005 mg/L). These areas registered values of 

pH between 7.5-7.8 and Temperatures between 22-23 °C. Conversely, the areas 

in red are those with high concentrations of As (0.33 mg/L), pH (9.5) and 

Temperatures of 30 °C. PC2 (30 %), influenced by EC, TDS and Hardness, 

presented negative coefficients (areas in yellow), indicating the presence of low 

values of EC (13-16 μS/cm), TDS (20-100 mg/L) and Hardness (100-200 mg/L). 

PC3 (12 %), influenced by Turbidity, depicted areas with negative coefficients 

indicating the presence of low values for this parameter (1.0 NTU). Meanwhile, 

positive coefficients corresponded to areas with high concentrations (900 NTU). 

Although Turbidity has the highest coefficient in the matrix of eigenvectors, 

Temperature also shows a similar behavior in the database (not shown). In this 

database, the negative coefficients correspond to zones with temperatures of 30 

°C and positive coefficients to areas with temperatures of 24 °C. Finally, PC4 (9 

%) is influenced by As and ORP. The areas with negative coefficients correspond 

to low concentrations of As (0.000005 mg/L) and ORP (85-113 mV). The areas in 

red correspond to high concentrations of As (0.27-0.34 mg / L) and ORP (250 

mV). 

In the S2, PC1 (35%) represents the variability of EC, TDS and Hardness. 

In this component, the red areas represent EC values (1,863 μS/cm), TDS (932.33 

mg/L) and Hardness (594 mg/L). The concentrations in yellow are for CE (1,078 
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Figure 8. Spatial distribution of the PC scores of S1 (top) and S2 (bottom). PC = 
Principal component. 
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μS/cm), TDS (573 mg/L) and Hardness (0 mg/L), which are distributed in module 

6 and the northern part of 7. PC2 (26 %) explains the variability of As and pH, 

where the high concentrations are distributed in module 7. In this module, the 

coefficients with positive value indicate As concentrations of 0.575 mg/L and pH 

of 8.9, while in modules 6 and 5, the concentrations are the lowest (As = 0 mg/L, 

pH = 7.4). The distribution of PC3 (15 %) explains the variation of Turbidity and 

Temperature. In these zones (red color), the PC explains Turbidity concentrations 

of 519 NTU and Temperature 23.8 °C. Turbidity values of 0.43 NTU and 

Temperature of 27.5 °C are reported in the yellow zones. PC4 (9 %) represents 

the variability of ORP. The zones in red tone indicate ORP concentrations of 306 

mV and in yellow values of 106 mV. 

The multivariate techniques and the interpolation were useful to interpret 

the relationship between the PhP. The PCA has been previously used to examine 

and interpret the behavior of groundwater quality parameters (Sánchez-Martos et 

al., 2001; Liu et al., 2003; Chapagain et al., 2010; Belkhiri et al., 2011). The 

relationship between the PhP provided significant information on the possible 

sources of these parameters. In this study, four components were needed to 

explain the original data set. The four components showed that the behavior of 

the PhP in the wells was governed by more than one process or phenomenon. 

According to Yidana et al. (2010), in the analysis of dimensionality 

reduction of variables PC1 usually represents the most important mixture of 

processes in the study area. The PCA results suggest that most variations in 

water quality were found in S1 (summer) for As, pH and Temperature followed by 

EC, TDS and Hardness; and in S2 (Fall) for EC, TDS and Hardness, followed by 
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As and pH. According to Bonte et al. (2013), the increase in temperatures was 

associated with the As increase, which was shown in S1 where the main variables 

that explained the total variability were shown. The above was also demonstrated 

in the CA and the spatial interpolation of the individual parameters and the main 

components where high temperature zones show a spatial distribution similar to 

As. 

The variables that were grouped in PC1 and PC2 of each sampling season 

had similar coefficients, which imply the existence of some similarities in the way 

they influence the groundwater concentration. It was observed that As, EC, TDS, 

Hardness and pH were shown in components 1 and 2 in both samples. This was 

consistent with the results of the interpolation, showing that the distribution of 

these parameters had a similar dispersion in the ID005. The interpolations of the 

PC coefficients are similar to the maps of the main components derived from the 

water sampling from the wells. Previous studies have shown similar results to 

improve the interpretation of PC (Lu et al., 2012; Mueller and Grunsky, 2016). 

These variables together accounted for more than 60 % of the variability of the 

original data set. Also, it was observed that there was an exchange of these 

variables in PC1 and PC2. This behavior may have been caused the result of the 

different sampling seasons. 

These relationships agree with the natural dynamics of water PhP. The pH 

is the main factor that controls the concentrations of soluble metals (Acosta et al., 

2011). As well as, the arid climate leads to evaporation which can interfere in the 

concentration of As (Brahman et al., 2013) and cause seasonal variations. It was 

observed that As concentrations higher than the MPL (0.1 μg/L) of water for 
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agricultural irrigation established in the Mexican regulation (Ayers and Westcot, 

1994), were presented in the northern area of the territory in both S1 and S2. The 

EC showed a significant correlation with parameters such as Hardness, TDS (Patil 

et al., 2012), which can be related to water salinity (Brahman et al., 2013). 

In wells that contain high amounts of As, the pH is also high. This was 

reaffirmed by the CA method and interpolation, where Group 1 showed the 

highest As and pH values for S1 and S2. The first two main components (PC1 

and PC2) in both stations (S1 and S2) showed similar variations. This same 

behavior was observed in wells where high concentrations of EC, TDS and 

Hardness were obtained, which was also observed by the CA and spatial 

interpolation. 

For this study, the wells near the city showed the highest concentrations of 

EC, TDS and Hardness. The EC and TDS measurements for the S1 and S2 

samples showed that the salinity is classified according to the Food and 

Agriculture Organization of the United Nations (FAO) as moderate (EC 700 - 3000 

μS/cm, TDS 450 - 2,000 mg/L), especially in the southern area of ID005 (Kolsi et 

al., 2013). EC and high TDS limit the absorption of water by crops because of the 

salt that stays in the roots. Due to the difficult access to water, the growth rate of 

plants is reduced, which limits agricultural production (Eder et al., 1994). The EC 

and the TDS in groundwater samples are significantly correlated with cations and 

anions (Ca2+, K+, Na+, Cl+, NO-3 and SO4
2), which can be the result of ionic 

changes in the aquifer (Brahman et al., 2013). 

In the case of Hardness, it was within the MPL established by the Mexican 

regulation (500 mg/L) (SSA, 1993). However, according to Gebreyohannes et al. 
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(2015), water with Hardness greater than 151 mg/L is classified as hard water. 

Considering this criteria, 75 and 77 % of the samples (S1 and S2, respectively) 

were classified as hard water. This classification may indicate that there are 

deposits with high Mg2+ and Ca2+ contents (Gebreyohannes et al., 2015). 

Likewise, it is considered that hard water is not suitable for industrial and 

agricultural purposes (Patil et al., 2012). 

The interpretation of the spatial behavior of the main processes present in 

the study area on water quality was possible when the scores derived from the 

PC were mapped. Previous studies have used geostatistical methods to map the 

scores resulting from PCA and used the resultant maps to predict the factors that 

may be impacting groundwater quality (De Freitas et al., 2014; Ha et al.,2014). 

Based on the results of the PCA and the CA it was possible to understand the 

multivariate relationship of the set of parameters. In turn, with the application of 

the IDW interpolation technique on the scores of the PCA, it was possible to 

analyze the spatial variability. The combination of both methods is useful to 

examine patterns in common groups of parameters allowing to summarize the 

multiple relationship of variables on geographic regions for use in water quality 

analysis. 

The PCA, the CA, the correlation coefficients and the interpolation were 

consistent with these interpretations. Although the results of the present study 

provided important conclusions regarding the origin of each PhP, more studies 

are needed to obtain a better understanding of the sources of the PhP and their 

concentrations. 
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                          CONCLUSIONS AND RECOMMENDATIONS 

 The As is an element present in the ID005, it is at levels that can cause a 

risk to agricultural production, mainly in the northern region. In addition, it is 

important to continue this investigation to determine the As traceability in the 

medium and to identify the risk of introducing this metalloid to the food chain by 

diet intake. 

A slight issue was observed with indicators that affect the salinity of water. 

If such high levels persist, it can be detrimental to the optimal development of 

crops. Therefore, it will be necessary to look for alternatives to ameliorate this 

situation. Perhaps, starting with a continuous monitoring of wells in the ID005. 

Multivariate statistical methods and spatial interpolation can be useful to 

identify locations of priority concern and potential sources of PhP, and to evaluate 

water quality in sludge from an agricultural area. The multivariate geographic 

information system (GIS) approach showed the spatial relationships between the 

PhP (As, pH, EC, TDS and Hardness), proving to be convenient for the 

confirmation and refinement of PhP interpretations through the statistical results. 
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