
UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA 

FACULTAD DE INGENIERÍA 

SECRETARÍA DE INVESTIGACIÓN Y POSGRADO 

 

 

 

 

 

 

 

 

ALGORITMOS DE APRENDIZAJE COMPUTACIONAL PARA LA 

SEGMENTACIÓN Y CLASIFICACIÓN DE ANOMALÍAS EN VÍAS DE 

TRÁNSITO 
 

 
 

POR: 

 

ING. MARIO EZRA ARAGÓN SAENZPARDO 
 
 
 
 

TESIS PRESENTADA COMO REQUISITO PARA OBTENER EL GRADO DE 

MAESTRO EN INGENIERÍA EN COMPUTACIÓN 

 

 

CHIHUAHUA, CHIH., MÉXICO                                                                      AGOSTO DE 2017 

 

 































































































































1

Evaluation of detection approaches for
Road Anomalies based on accelerometer readings –

addressing who’s who
M.R. Carlos, M.E. Aragón, L.C. González, Member IEEE, H.J. Escalante, F. Martı́nez

Abstract—A wide range of new possibilities in the area of
Intelligent Transportation Systems (ITS) emerged when sensors,
such as accelerometers, were introduced in practically every
smartphone. A clear example is using a driver’s smartphone
to detect the vertical movement experienced by the vehicle when
passing over a pothole or bump, in other words, sensing the
quality of the road. To this end, several approaches have been
proposed in the literature, most of them based on thresholds ap-
plied to accelerometer readings. Nonetheless, no fair comparison
of these approaches had been done until now, mainly because of
the lack of public datasets. In this work we propose a platform
to create road datasets that could be used by the community
to create their own roads with their own requirements. Using
this platform, we assembled a dataset of 30 roads plagued with
potholes and bumps, that we used to evaluate the most popular
heuristics previously reported. From these original results, a clear
winner emerges – a heuristic proposed by Mednis et al. called
STDEV(Z), suggesting that measures of dispersion are among the
best indicators to identify disruptions on accelerometer readings.
From this point, we fused features used by all these heuristics
within our own feature vector, which we used with a Support
Vector Machine. We show that the proposed methodology clearly
outperforms all other evaluated methods. To support these
conclusions, results were statistically validated. We expect to lay
the first steps to homogenize future comparisons as well as to
provide stronger baselines to be considered in subsequent works.

Index Terms—Accelerometer measurements, Mobile Sensing,
Smartphones, Pothole patrol, Nericell, Threshold-based heuris-
tics, Road anomalies.

I. INTRODUCTION

POPULATION growth and the expansion of cities are fol-
lowed by an increase in the volume and weight of traffic,

which directly accelerate the deterioration of the transportation
infrastructure. Additional causes to this phenomenon are the
effects of climate change [1], bad quality of construction
materials, and even deficiencies in road design. Altogether,
these issues are a breeding ground for the appearance of
anomalies in roads, e.g. potholes, bumps or cracks, which
are found worldwide in boulevards, streets and highways.
The effects of these anomalies can go from costly damage
to vehicle suspensions, to fatal accidents. Just as an example,
AAA motor club estimated, for 2014, that 6.4 billion dollars
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in damages to vehicles were caused by potholes, only in the
U.S.1; this situation is even worse in developing countries.

Some technological solutions have been envisioned to au-
tomatically detect and report road anomalies to government
agencies in order to accelerate maintenance tasks. For in-
stance, by using computer vision, methods based on shape
segmentation, and texture differences with regular pavement
to identify potholes in asphalt are reported in [2]. Similar
approaches adopting shape, edges, contour information and
template model fitting can be found in [3], [4] and [5]. More
elaborated methods based on stereo, 3D vision and depth
sensors are reported in [6]–[10]. These methods, however, rely
on expensive sensors, time consuming processes and/or with
common problems related to illumination, occlusions and the
fact that anomalies do not have a prototypical appearance.

In this sense, methods based on cheaper and wide-spread
technology are sought. Particularly, smartphone technology
has been successfully adopted to tackle this problem given
its sensing, geo-referencing and networking capabilities [11].
Smartphones’ accelerometers are able to detect the movement
of the device, in this way, as a vehicle encounters a road
surface irregularity, such as a pothole or a bump, the ac-
celerometers in the driver’s smartphone record the event. The
problem, then, is to identify from a continuous series of ac-
celerometer readings when an anomaly has been encountered.
This identification problem has been intensively studied in the
last years, using diverse ideas and approaches [12]–[24].

It is important to emphasize that although the problem of
identifying the presence of road anomalies via smartphone
sensing is well defined, there are issues that have prevented
the community from gaining more experience and a more
complete perspective of the approaches that have been pro-
posed. Most notably, the lack of benchmark datasets and of
standardized evaluation protocols: without common datasets
and evaluation metrics we are unable to identify weaknesses,
strengths, or even challenges in the different proposals. In
other words, we still do not know which, if any, of the reported
techniques consistently outperforms the rest, or to put it collo-
quially, who’s who among these methodologies. We are certain
that the answer to this question will better focus the efforts
of the scientific community, motivating further research on the
best performing techniques. Also, answering this question will
allow the field to progress rapidly, maintaining a good pace

1http://www.wusa9.com/story/news/nation/2014/02/24/
potholes-damage-cost-us/5773501/

http://www.wusa9.com/story/news/nation/2014/02/24/potholes-damage-cost-us/5773501/
http://www.wusa9.com/story/news/nation/2014/02/24/potholes-damage-cost-us/5773501/
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until this technology eventually reaches widespread use.
Taking these issues as a starting point, this manuscript

focuses on reporting novel results on two fronts, one method-
ological and one innovative. In the methodological front, this
manuscript aims to tackle: (i) the lack of common datasets,
and (ii) the heterogeneity in experimental settings of the
reported approaches. To advance in this direction, we devise
a platform that can be used by researchers in the field to
compare methodologies. Moreover, we performed an eval-
uation of two philosophically different group of strategies
that have been proposed to address this problem. On one
hand, we implemented and tested the six most influential
threshold-based strategies so far reported in the literature.
These first-of-their-kind results suggest that among the six
popular contenders, there is a clear winner, with a statistically
better F1 score than its counterparts. On the other hand, we
evaluated the suitability of frequency-based feature vectors that
were proposed when tackling this problem in the Machine
Learning way, thus, deriving general conclusions on the two
most popular methodological standpoints. On the innovative
front, we introduce a novel and effective methodology based
on Support Vector Machines (SVM) that outperforms all
the other evaluated techniques (including other classification
models trained on the same features). Accordingly, the main
contributions of this manuscript are:

• A novel (and public) web platform, called Pothole lab,
that can be used to generate virtual roads with a con-
figurable number and nature of road anomalies, which
we expect to be used by the community to evaluate their
own detection strategies. This way, we are giving the first
steps to generate benchmark datasets.

• The first results of a comprehensive comparison of the
most popular approaches for this problem, including
both threshold and machine learning based techniques,
on fair ground and under the same metrics. With these
results we now have a clearer and broader view of the
actual performance of established methodologies for this
problem.

• A new methodology based on Support Vector Machines
that altogether with a post-processing step clearly outper-
forms all other proposals. Through the complete dataset
that was used for evaluation, the SVM also shows a more
stable performance than its counterparts, including other
classifiers using the same features.

The remainder of the paper is organized as follows: Section
II presents related work for this problem, and outlines the
heuristics to be evaluated. Section III describes our experimen-
tal setup and methodology, it also introduces “Pothole lab,”
and presents the features of the training and testing datasets.
In Section IV, we introduce and explain our own proposal.
Section V presents the results of our evaluation. Finally, we
present the conclusions of our study in Section VI.

II. RELATED WORK

Although a good number of strategies have been proposed to
tackle this problem using the accelerometer sensor [12]–[24],
most of them are based or have been greatly influenced by a

group of seminal works. Thus, in the methodological front, this
work aims to compare and evaluate these high-impact works
that have motivated most of the developments in the field.
Among the most frequently cited works for accelerometer-
based detection of anomalies in roads that are threshold-
based, with about 1800 citations in total, we find The Pothole
Patrol, by Eriksson et al. [15], the work of Mednis et al.
[17], and Nericell, by Mohan et al. [16].2 In these papers, the
authors proposed threshold-based heuristics for the detection
of different types of anomalies, mostly working with vertical
acceleration. It is important to note that this identification
problem, although quite related, is different from that of rec-
ognizing the anomalies in roads that we previously addressed
in [25]. In this latter problem, assuming that an anomaly has
been detected and segmented from a continuous signal, the
task is to assign it a correct label (e.g. pothole, metal bump,
crack, uneven road, etc.), thus being by nature a multi-class
classification problem. For the identification problem, treated
in this manuscript, the task is to indicate if an anomaly is
present in a (continuous) sequence of accelerometer readings,
thus being a one-class problem, i.e. we are only interested in
knowing if there is an anomaly on the road, without knowing
its type.

In Pothole Patrol [15], the authors used triaxial accelerom-
eters and GPS (sampling at 380 Hz and 1 Hz, respectively),
installed in a fixed position in seven taxis, to collect data
while driving over 9,730 km in the Boston area. Acceleration
in the Z (vertical) and X (lateral) axes were processed with
consecutive threshold-based filters to detect road anomalies,
and differentiate potholes from other types of anomalies.
Threshold values were determined by training their algorithm
with hand-labeled data (containing finely identified events) and
loosely labeled data (in which the exact number of events
is known, but not their location). In their conclusion, they
report less than 0.2% of misidentified potholes in controlled
experiments, and that 90% of their detections in uncontrolled
data corresponded to real potholes.

Mohan et al., in Nericell, explored the usage of smartphones
for opportunistic sensing with the intention of monitoring road
and traffic conditions in a city. Among several other problems,
they address the detection of bumps and potholes. The smart-
phones’ accelerometers were set to sample at 310 Hz. Their
proposal is based on the application of two procedures, one
after the other: Z-PEAK, originally presented in [15], and Z-
SUS, a new detector that is used at low speeds. They tested
their proposal over two routes, one short (5 km) and one long
(30 km), both with a known number of anomalies. The authors
observed a 20-30% false negative rate (FNR).

Mednis et al., presented four heuristics: Z-THRESH, G-
ZERO, Z-DIFF, and STDEV(Z) [17]. Preliminary data col-
lection was performed with a triaxial accelerometer, sampling
at 100 Hz, and a micro-controller connected to a laptop com-
puter. GPS was only used to establish ground truth, marking
the location of large potholes, small potholes, pothole clusters,
gaps, and drain pits. For their definition of ground truth, an

2As of May 2017, Google Scholar reports over 980 citations for Mohan et
al., over 667 for Ericksson et al., and over 164 for Mednis et al.
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item is an anomaly if it is found at least four times in different
laps, within a 15 m radius. In the testing phase, four different
smartphones were used for data acquisition in a 4.4 Km. track
(with sampling frequencies of 26, 98, 52, and 47 Hz). The
True Positive Rate (TPR) reported goes from 73% to 92%.

Afterwards, some works appeared where their hypothesis
was that information derived from the frequency of the ac-
celerometer signals could be more discriminative in compar-
ison with the one extracted only using the time-domain. The
most representative works in this direction were those reported
by Perttunnen et al. [18] and Seraj et al. [21]. Perttunnen et
al. enriched their feature vector (already containing statistical
scores from the raw time series) with energy values for each
band obtained from a Fast Fourier Transform (FFT), and mel
frequency cepstral coefficients. Their best result for anomaly
detection was a Geometric mean (G-mean) of 0.89, when
employing a SVM containing 95 features. Seraj et al., on their
part, generated their feature vector with Stationary Wavelet
Transform (SWT) decomposition, performed at four levels
using a Sym5 wavelet. Their best result was a G-mean of
0.89, obtained with a feature vector containing time-domain
and statistical metrics and energy calculated on the detail and
approximation coefficients of SWT decomposition, both for
accelerometer as for gyroscope sensors.

As could be seen, all these works have been tested on dif-
ferent scenarios, with different conditions and using different
metrics, therefore it is hard to know the actual performance of
any of them when compared to the rest. One of the contribu-
tions of this manuscript is to bring some light in this direction.
Since we implemented the 6 threshold-based heuristics from
scratch, we provide a more in-depth explanation of their
internal mechanisms in Appendix A.

III. EXPERIMENTAL SETUP

A. Pothole Lab

One of the problems in the evaluation of road anomaly
detection approaches is the lack of publicly available, robust,
and curated datasets. To overcome this situation, we introduce
a web platform named Pothole Lab3, freely available to the
community. Pothole Lab was created to automate and consol-
idate the generation of virtual roads from acceleration patterns
that represent common road anomalies. It is important to note
that although we use the term virtual, all the anomalies were
captured while driving on real roads. The collection of these
anomalies was performed while driving in urban settings, both
in residential streets and high speed avenues, under standard
driving conditions. The vehicles used for the sample collection
are presented in Table I. To build test roads, Pothole lab is fed
by a database composed of anomalies of different kinds, Table
II presents the nature and the number of samples for each one
that are currently stored. It is important to remark that new
samples could be added, so more diverse and anomaly-richer
test roads could be created. Moto G Android smartphones were
used to collect acceleration samples, at a sampling frequency
of 50 Hz. Samples contain a few seconds of anomaly-free

3http://www.accelerometer.xyz/pothole lab

signal both before and after an anomaly is encountered. The
frame of reference of these signals corresponds to the vehicle’s
up-down (Z), left-right (X), and forward-backward (Y ) axes.
Details of parameters and file format of roads created with
Pothole Lab are presented in Appendix B.

Table I
VEHICLES USED FOR SAMPLES COLLECTION.

Vehicle

VW Jetta 2002
Chevrolet pickup S10 1991

Chevrolet Chevy 2009
Nissan Frontier 2001
Toyota Camry 1999
Nissan Altima 2003

Table II
ANOMALIES INCLUDED IN THE POTHOLE LAB WEB PLATFORM.

Category Samples

Asphalt Bump 81
Pothole 56
Metal bump 50
Plane road 50

Total 237

B. Experimental dataset

Using Pothole Lab, we assembled 30 different roads con-
taining acceleration samples for potholes, speed bumps (both
asphalt and metal), and sections of road without anomalies. We
created homogeneous roads (with only one kind of anomaly)
and heterogeneous ones (with different types of anomalies).
These roads can also be categorized based on their number of
anomalies, e.g., short (≤ 10 anomalies), medium (10< anoma-
lies ≤25 ), and long (> 25 anomalies). Table III describes all
the virtual roads generated and their main features. In this
table, the term bumps represents Asphalt bumps, other terms
are self-explanatory.

Some roads were used for training and others for testing
purposes. The training roads were used to calibrate the param-
eters for each heuristic, trying to find the values that yielded
the best results. One important aspect of the usability of any
approach is to reduce the amount of data that it needs in order
to be calibrated. Following this idea, the training components
of the dataset are in all cases shorter than their respective
testing components. This dataset is also publicly available.4

C. Performance metrics

The nature of this problem requires to identify an anomaly
(possibly) present in a sequence of accelerometer readings, i.e.,
meaning that we have a one-class problem. For this purpose,
we will use three well-known performance scores for the
evaluation process. (i) Sensitivity (see Eq. 1), also called the
True Positive Rate (TPR), measures the proportion of true

4 At http://www.accelerometer.xyz/pothole lab/datasets

http://www.accelerometer.xyz/pothole_lab
http://www.accelerometer.xyz/pothole_lab/datasets
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Table III
THIRTY VIRTUAL ROADS GENERATED WITH POTHOLE LAB.

Road Training Testing

1 16 potholes 40 potholes
2 20 potholes 50 potholes
3 30 bumps 50 bumps
4 20 bumps 50 bumps
5 20 metal bumps 30 metal bumps
6 10 metal bumps 40 metal bumps
7 50 potholes and bumps 50 potholes and bumps
8 20 potholes and bumps 80 potholes and bumps
9 20 bumps and 20 metal bumps 50 bumps and metal bumps

10 20 potholes, 20 bumps and 20 metal bumps 100 potholes, bumps and metalbumps
11 5 bumps 10 bumps
12 5 potholes 10 potholes
13 5 metalbumps 10 metalbumps
14 3 bumps, 3 potholes 5 bumps, 5 potholes
15 3 bumps, 3 metalbumps 5 bumps, 5 metalbumps
16 3 potholes, 3 metalbumps 5 potholes, 5 metalbumps
17 3 bumps, 3 potholes, 3 metalbumps 5 bumps, 5 potholes, 5 metalbumps
18 15 bumps 25 bumps
19 15 potholes 25 potholes
20 15 metalbumps 25 metalbumps
21 8 bumps, 8 potholes 15 bumps, 15 potholes
22 8 bumps, 8 metalbumps 15 bumps, 15 metalbumps
23 8 potholes, 8 metalbumps 15 potholes, 15 metalbumps
24 8 bumps, 8 potholes, 8 metalbumps 15 bumps, 15 potholes, 15 metalbumps
25 30 bumps 40 bumps
26 20 potholes 25 potholes
27 25 metalbumps 25 metalbumps
28 15 bumps, 15 potholes 20 bumps, 20 potholes
29 15 bumps, 12 metalbumps 20 bumps, 20 metalbumps
30 15 potholes, 15 metalbumps 20 potholes, 20 metalbumps

positive examples that are correctly identified. (ii) Precision
(see Eq. 2), also called the Positive Predicted Value (PPV),
measures the proportion of true positive examples out of the
total number of detections. (iii) F1 score (see Eq. 3), also
known as F-measure, is a measure of a test’s accuracy and
can be interpreted as the harmonic of precision and sensitivity,
where an F1 score reaches its best value at 1 and worst at 0.
For our purposes, a True Positive (TP) is a detection made by
the algorithm within a range known to contain an anomaly.
A False Negative (FN) is when no detection is made by the
algorithm within a range known to contain an anomaly. A
False Positive (FP) is a detection made where no anomaly is
known to occur.

Sensitivity =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F1 =
2TP

(2TP + FP + FN)
(3)

D. Tuning the detectors

The detection approaches that were tested require to specify
a set of parameters for their use. Our first attempt was to use
the parameters suggested by the authors in their respective
works. However, we found that these parameters were not the
best to use in all cases because detection results were erratic.
This might be attributable to significant differences between

the nature of our dataset and theirs. Therefore, we conducted
a grid search for all the parameters of the detectors, and in the
end we chose the parameters that yielded the best F1 score for
each road.

IV. A SUPPORT VECTOR MACHINE SVM(Z)
Our proposal for the detection of anomalies consists of

a Support Vector Machine (SVM) classifier fed with novel
features to identify the sections of the accelerometer read-
ings where an anomaly is present5. We first preprocess the
accelerometer signal by applying a sliding window technique.
For each window we generated 12 features6. The task of
the SVM is to point out the window(s) where an anomaly
occurs. There are 12 features in total per window, formed
by five statistical scores, and seven others that enrich that
information. The statistical features are: Mean of the ac-
celerometer values, Standard Deviation, Variance, Coefficient
of Variation, and the difference between Max and Min values.
The next four features were thought to confer a confidence
score for the previous features (except Variance), so that
4 of the statistical features were compared against a given
threshold. If the feature that was compared resulted to be
higher than the threshold, then the confidence score for that
feature would be a score of 0.8, or a score of 0.2 otherwise.

5Although we report the results of the SVM, given it produced the best
results, we also evaluated the performance of the following classifiers: Naı̈ve
Classifier, Random forest, Decision Tree, Artificial Neural Network, Hidden
Markov Model and a Gradient Boosting classifier.

6For all features the information gain was computed to confirm that no
redundant or useless feature was used.
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This idea of supporting with a confidence score each feature
was motivated when analyzing the seminal works (evaluated
in this manuscript), since most of these heuristics improve
their performance via similar mechanisms. The thresholds used
for each feature were originally proposed by Mednis et al.,
these values are presented in Table IV. Another feature is
the number of times that a statistical feature overpass the
threshold values. To complete the feature vector we add as
another pair of features the sum of the confidence values and
its corresponding confidence value (calculated as described).
As could be seen, our feature-extraction process is full of
parameters, so in order to build the best representation for
each road a grid search was conducted. All the parameters
that were evaluated, as well as the parameters that concern
the selection model, are presented in Table V, the ones that
resulted in the best performance are in bold face. For the
SVM, we relied in the implementation provided by the Python-
based platform called Scikit-Learn7. After the SVM assigns
a label to each window, a post-processing step needs to be
performed to avoid counting twice contiguous windows that
may share the accelerometer readings for the same event. This
same procedure is used for all heuristics being compared

Table IV
THRESHOLDS VALUES FOR FEATURES (g STANDS FOR GRAVITY).

Values Threshold

Mean g*0.3
Standard Deviation g*0.15

Coefficient of Variation g*0.015
Difference (Max-Min) g*0.2

Sum of confidence score 3

Table V
PARAMETERS USED IN THE GRID SEARCH PROCESS FOR FEATURE AND

MODEL SELECTION.

Confidence scores C

range (0.1,...,0.8,0.9) 1,10,15,20
Kernels Window size

Poly, lineal, sigmoid, and RBF 10, 20, 30, 50, 100

V. RESULTS

In this section we present the evaluation of all approaches to
know who’s who in relation to the identification of anomalies
on roads. We would like to remark that this is the first time that
all these approaches are compared under the same conditions,
therefore, we expect that these results could be examined by
the original authors and the rest of the community to have a
feedback on what the limits and opportunities are for these
proposals.

To make a more robust comparison, we add an extra player,
which is simply based on an ensemble strategy. We will name
this competitor, Swarm, since it integrates via a majority vote
the six popular threshold-based heuristics presented in the

7http://scikit-learn.org/stable/

literature review. This idea is based on the assumption that
the whole set of heuristics should perform better than any
individual participant, so in scenarios that are particularly bad
for one heuristic, a compensation could occur via the majority
vote of the rest, keeping a good performance as a whole. Note
that we left the proposal of Seraj et al. out of this comparison,
since they also used data from the gyroscope to enhance their
feature vector, and we do not have those sensor readings in our
dataset. Nonetheless, we will used the work of Perttunnen et
al. as representative of ML methods. That work is referenced
as PERT in our analysis.

First, we calculated the Sensitivity and Precision scores for
all approaches over the 30 test roads. Precision is related to
the ability of detecting all True Positives (anomalies) in the
data, on the other hand, Sensitivity measures the ability of
discriminating True Positives from False Positives. A perspec-
tive of the performance of the nine competitors in these two
metrics is shown through a scatter plot in Figure 1a. Strikingly,
Pothole Patrol (PP), which is perhaps the only work that has
been extended to a real-life application, presents the poorest
performance, only in some instances comparable with another
poor contender, the Z-DIFF heuristic. Above these, one finds
the Nericell approach and PERT, followed by Z-THRESH and
G-ZERO, which locate both in the middle region. From here,
we start identifying that STDEV(Z) presents a competitive be-
havior, being the method with the highest sensitivity score on
average. Swarm also performs well, keeping itself as the best
strategy when favoring Precision over Sensitivity. SVM(Z),
on its part, also shows a high and stable performance, being
within the first two strategies in both scores of interest. Figure
1b summarizes this plot by showing the centroids (average
values) for all the predictions made by these techniques.

(a) (b)

Figure 1. A) Sensitivity and precision of every approach for the 30 roads
dataset (key explanation in adjacent figure). B) Average performance for all
the approaches.

Table VI shows for all the roads in the dataset the method
that obtained the best performance, as measured by the F1
score. F1 harmoniously combined into one score, the ca-
pability of a detector of only focusing on detecting a real
anomaly, thus, in this manuscript we adopted it as our golden
metric. Out of the 30 roads, STEDEV(Z) is the winner
on 14 roads, SVM(Z) on 9, PERT on 3, SWARM on 2
and Z-DIFF on 2. Table VII condensates the average of F1
score for all methods over the 30 roads. Here, SVM(Z) is
clearly the top performer, having on average the highest F1
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Figure 2. Examples of accelerometer readings that are related to anomalies.
Marks over the signal indicates where an anomaly occurs (Ground Truth),
while the green box indicates what is found by SVM(Z).

score. This means the proposed method is more robust across
different roads than the other techniques. As we mentioned
earlier, we also evaluated the same feature vector with other
Machine Learning techniques, these results are presented in
Appendix C. From that appendix we corroborate that the
best performance was obtained by the SVM, closely followed
by a multilayer perceptron. In addition to its performance,
the SVM is preferred for being a deterministic technique.
To emphasize the robustness of SVM(Z), consider Figure 2,
where different anomalies within a road are shown. The red
box indicates the anomaly section found by SVM(Z), whereas
the marks (points) over the signal indicates the Ground Truth.
Note that accelerometer series are highly irregular, prone to
noise, and even in these cases, SVM(Z) is able to detect with
high accuracy the presence of an anomaly.

To have a better grasp of the performance differences of
the evaluated proposals, Figure 3 presents a series of rose
plots where the 30 roads are uniformly distributed along the
360o of a circumference. For each rose plot, we have a series
of concentric circumferences that represents different score
ranges. The outermost circumference represents the perfect F1
score (on a 0 to 100 scale). This inspection is perhaps, the most
compelling argument against or in favor of certain approaches,
since we can easily detect the top performers. There are
some insights that these figures convey. Visually analyzing
the geometries of performance for all detectors, there are three
groups that are identified. The first group, made by Z-DIFF
and Pothole Patrol, show an extremely bad and inconsistent
performance. Ironically, Pothole Patrol “suffers” in roads that
are only made by Potholes, such as 1, 2, 12, 19 and 26.
The group that locates in the middle range is composed by
G-ZERO, Z-THRESH, Swarm, Nericell and PERT. STEDEV
and SVM, on their part, are members of the high performance
group.

To validate the differences (in F1 score) among the de-
tectors’ performance, we used the Friedman non-parametric
test and the Nemenyi post-hoc test [26], with a level of
significance α = 0.01. To present this analysis we use the
Critical Difference diagram (CD) proposed by J. Demsǎr [26],
which in a simple, but elegant way, it allow us to see how
the methods are ranked (the best algorithm appears rightmost)
and even presents a perspective of the differences between
the average rank taking into account the 30 road tests. If the

Table VI
BEST RESULTS FOR EVERY ROAD IN THE DATASET.

Road Best Sensitivity Precision F1 Score

1 SVM 0.775 0.939 0.8493
2 SVM 0.82 0.891 0.8541
3 PER 0.9 0.95 0.0.9278
4 STDEV 0.9 0.9 0.9743
5 Z-DIFF 0.7 0.7777 0.7368
6 Z-DIFF 0.8 0.7619 0.7804
7 STDEV 1 0.8947 0.9444
8 STDEV 0.975 0.8478 0.9069
9 PER 0.86 0.716 0.7818

10 STDEV 0.86 0.8113 0.8349
11 STDEV 0.9 1 0.9473
12 SVM 1 1 1
13 SVM 0.5 1 0.6666
14 STDEV 1 0.7142 0.8333
15 SVM 0.6 1 0.75
16 STDEV 1 0.9090 0.9523
17 SVM 0.8 0.923 0.85
18 STDEV 1 0.8666 0.9285
19 SVM 0.8 0.952 0.8695
20 STDEV 0.76 0.76 0.76
21 Swarm 0.6666 1 0.8
22 STDEV 0.8666 0.9285 0.8965
23 Swarm 0.7666 0.9583 0.8518
24 STDEV 0.9111 0.8913 0.9010
25 STDEV 0.975 0.8666 0.9176
26 STDEV 0.84 0.75 0.7924
27 SVM 0.84 0.807 0.8235
28 STDEV 0.975 0.7647 0.8571
29 PER 0.75 0.78 0.7692
30 SVM 0.575 0.884 0.6969

Table VII
AVERAGE F1 SCORES FOR ALL DETECTORS.

ZTH ZDIF STV GZE NER PP SWA SVM PERT

.706 .528 .769 .676 .675 .45 .753 .785 .668

difference between the rank average of the compared methods
is equal or less than the Critical Difference (CD), then, there
is no evidence that the methods are statistically different, and
the diagram joins the methods through a thick line. Figure 4
shows this comparison. With this tool in hand, our analysis
is complete. Results suggests that on average, STDEV is the
best strategy among the original seminal works, so if we are
just interested to know who’s who among all these detectors,
this is the one. Variance on accelerometer readings is a good
strategy to identify anomalies, surpassing differences, devia-
tions from gravitational force, thresholds or specific filters, all
of these used by other approaches. Interestingly, STDEV(Z)
even performs slightly better than SWARM, which suggest
that there may be some scenarios where the majority of the
approaches fail, even when STDEV(Z) does not, consider for
example, road 16, where most of the heuristics struggle to
identify anomalies, but STDEV(Z) has a good F1 score.

Regarding our proposed SVM(Z) method, it shows remark-
able performance obtaining better F1 score than any other
of the considered techniques. Its advantages, as discussed
earlier, are based on successfully fusing and exploiting features
proposed in seminal works. Interestingly, when analyzing the
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Figure 3. Rose plots of F1 for the 30 roads for a) G-ZERO, b) STDEV(Z), c) Z-DIFF, d) Z-THRESH, e) Nericell, f)Pothole Patrol, g) Swarm, h) SVM(Z)
and i) PERT.

information gain of features (an estimate of their discrimi-
native power), the Standard Deviation and Variance, are the
ones with higher values, thus supporting the hypothesis that
these scores in particular are the best to use when looking
for disruption in accelerometer data. In a direct comparison
against a similar model, our work clearly surpasses PERT,
suggesting that even working on the time-domain, with the
correct set of features, provides clear advantages.

Finally, we extend the experimental section in three ways:
(1) evaluating another well-known strategy commonly used to
detect sudden changes in accelerometer data, (2), analyzing
the performance of all heuristics over real road scenarios and
(3), presenting Sensitivity scores of the detectors over the test
data separated in speed ranges, to analyze speed dependence.

A. Comparison against Simple Moving Average

To add more context to the results that were presented, we
considered another strategy used in the literature to detect
sudden changes in a series of accelerometer readings [27].
This strategy, called Simple Moving Average (SMA), has
proved to have the capability to automatically extract segments
that contain an event of interest, in our case, an anomaly.
We implemented SMA, as reported in [27] and computed

Figure 4. CD diagram with statistical comparison of F1 score for all the
detectors.

Precision, Sensitivity and F1 over the 30 test roads, obtaining
average scores of 0.368, 0.732 and 0.474, respectively. This
result clearly proves the complexity of the test roads used
in this manuscript, and emphasizes the good performance of
STDEV(Z) and SVM(Z).

B. Evaluation on real roads

Even when the principal focus of this manuscript is to
compare all heuristics under pessimistic scenarios, we proceed
with an extra comparison of the proposed works under real
road conditions. We selected three different routes around
the new campus of the Autonomous University of Chihuahua
(Mexico), which contain metal bumps and asphalt bumps. For
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this experiment, we used two cars, a Honda Accord (2007) and
a Chevrolet Aveo (2013). Road 1 contains 4 metal bumps, road
2 contains 5 asphalt bumps, and road 3 contains 1 metal bump.
For training, we employ the accelerometer data collected by
one car, and for testing we used data from the other car. We
used 4 smartphones, that were simultaneously recording the
acceleration in the roads. The positions of these smartphones
were: driver’s door, drivers’s shirt pocket, and two of them in
the central console. Table VIII presents the average of F1 score
for every heuristics by road (over the 4 smartphones), and the
final average. Each road poses a different level of difficulty,
and we can verify this by analyzing the F1 scores per road.
On the first road, most of the heuristics show a good capacity
to detect metal bumps, while for the second and third road,
STDEV(Z) and SVM(Z) blunt ahead, with the latter showing
an outstanding performance. These final results, then, confirm
our previous findings about the strengths of these two detectors
to effectively identify anomalies in roads.

Table VIII
AVERAGE F1 SCORES FOR ALL DETECTORS ON REAL ROAD.

Detector Road 1 Road 2 Road 3 AVG

Z-THRESH 0.611 0.490 0.250 0.45
Z-DIFF 0.866 0.184 0.5 0.516

STDEV(Z) 0.719 0.598 0.916 0.744
GZERO 0.222 0 0 0.074

NERICELL 0.719 0.291 0 0.336
POTHOLE PATROL 0.087 0.087 0.084 0.086

SVM(Z) 0.841 0.792 1 0.877

C. Speed dependence

Most of the original contributions for the methods, reported
here, did not mention if their respective algorithms require to
remove speed dependence of the accelerometer signal. Follow-
ing this logic, we did not remove this artifact in our testing
dataset. However, in order to appreciate how speed could affect
the discrimination capacity of the detectors, we performed
an additional experiment: we organized the test dataset in
bins of different speed ranges and calculated the sensitivity
score for all detectors. Table IX presents this information. We
can appreciate that practically all detectors show a consistent
behavior regardless the influence of the speed. This result
strengthens the robustness of all the approaches to deal with
raw accelerometer readings, thus making them appropriate for
on-line prediction (as suggested by their respective authors).

VI. CONCLUSIONS AND FUTURE WORK

Proposals to use the smartphone as a cheap and widespread
tool to measure the quality of roads while the user is at the
steering wheel have been a hot topic for Intelligent Transporta-
tion Systems. In this manuscript we approached a pending task
that had been overlooked by this community, i.e., evaluating a
set of seven seminal heuristics that have guided and influenced
the development of new anomaly detection strategies. To
accomplish this task, we propose a web platform that can
be freely used by the community to create virtual roads to
perform their own experiments. Using this platform, called

Table IX
SENSITIVITY SCORE FOR ALL DETECTORS ON METAL BUMPS CAPTURED

AT DIFFERENT SPEEDS.

Km/hr 10 20 30 40 50 60 70 80

Ground Truth Events 20 60 65 21 7 6 3 1

Detector
ZTHR 0.80 0.85 0.83 0.90 1 1 1 1
ZDIF 0.55 0.55 0.63 0.61 0.71 1 1 1
STDE 0.70 0.81 0.80 0.80 1 1 1 1
GZER 0.75 0.81 0.81 0.85 1 1 1 1
NERI 0.75 0.81 0.81 0.85 1 1 1 1

PP 0.75 0.81 0.81 0.85 1 1 1 1
SVM(Z) 0.85 0.81 0.83 0.90 1 1 1 1

PERT 0.75 0.81 0.81 0.85 1 1 1 1

Pothole lab, we generated 30 heterogeneous roads, plagued
with anomalies, that were used as test beds. We conducted an
extensive evaluation process for all heuristics over this dataset,
calculating: Sensitivity, Precision and F1 score. Statistical tests
were also applied to support this analysis. Our results suggest
that the best strategy, among, the seminal works, is the one
called STDEV(Z), originally proposed by Mednis et al., which
clearly outperforms other popular and wide known detectors
such as Pothole Patrol and Nericell. This particular output,
positions STDEV(Z) as a top competitor, answering thus, the
question posed in this manuscript’s title.

On the other hand, we also introduced a new method for
road anomaly detection based on a Support Vector Machine
fed with novel features inspired in previous works. This detec-
tor, named SVM(Z), obtained the best F1 score on average in
the overall comparison, outperforming even the best heuristic
analyzed in this manuscript, STDEV(Z). As a final evaluation,
we applied all detectors to another dataset composed by 3 real
roads. In this experiment, SVM(Z) confirmed its capabilities
to effectively detecting anomalies in different scenarios, being
the detector with the highest F1 score on average. With
these results, we expect the community to have a better
perspective of which detectors to use as competitors for their
own approaches, as well as reliable and challenging datasets.

As for future work, we would like to perform a deeper
analysis on the circumstances under which STDEV(Z) and
SVM(Z) showed their lowest performance. We think that this
knowledge could be valuable to propose better and more robust
detectors.

REFERENCES

[1] World Road Association, The importance of road maintenance. World
Road Association (PIARC), 2014.

[2] C. Koch and I. Brilakis, “Pothole detection in asphalt pavement images,”
Advanced Engineering Informatics, vol. 25, no. 3, p. 507–515, 2011.

[3] A. Georgopoulus, A. Loizos, and A. Flouda, “Digital image processing
as a tool for pavement distress evaluation,” International Journal of
Photogrammetry and Remote Sensing, vol. 50, no. 1, pp. 23–33, 1995.

[4] J. Karuppuswamy, V. Selvaraj, M. Ganesh, and E. Hall, “Detection and
avoidance of simulated potholes in autonomous vehicle navigation in an
unstructured environment,” in Proc. SPIE 4197, Intelligent Robots and
Computer Vision XIX: Algorithms, Techniques, and Active Vision, SPIE,
2000.

[5] C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, and P. Fieguth, “A
review on computer vision based defect detection and condition assess-
ment of concrete and asphalt civil infrastructure,” Advanced Engineering
Informatics, vol. 29, pp. 196–210, 2015.



9

[6] M. R. Jahanshahi, F. Jazizadeh, S. F. Masri, and B. Becerik-Gerber,
“Unsupervised approach for autonomous pavement-defect detection and
quantification using an inexpensive depth sensor,” Journal of Computing
in Civil Engineering, vol. 27, no. 6, 2013.

[7] Q. Li, M. Yao, X. Yao, and B. Xu, “A real-time 3d scanning system
for pavement distortion inspection,” Meas. Sci. Technol, vol. 21, no. 8,
2010.

[8] J. L. K. Chang, J.R. Chang, “Detection of pavement distresses using
3d laser scanning technology,” in Proceedings of the 2005 ASCE
International Conference on Computing in Civil Engineering, 2005.

[9] M. Jokela, M. Kutila, and L. Le, “Road condition monitoring system
based on a stereo camera,” in Intelligent Computer Communication and
Processing, 2009. ICCP 2009. IEEE 5th International Conference on,
2009.

[10] H.-T. Chen, C.-Y. Lai, C.-C. Hsu, S.-Y. Lee, B.-S. P. Lin, and C.-
P. Ho, “Vision-based road bump detection using a front-mounted car
camcorder,” in Proceedings of the 2014 22Nd International Conference
on Pattern Recognition, ICPR ’14, (Washington, DC, USA), pp. 4537–
4542, IEEE Computer Society, 2014.

[11] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang, and X. Zhou,
“Mobile crowd sensing and computing: The review of an emerging
human-powered sensing paradigm,” ACM Computing Surveys, vol. 48,
pp. 7:1–7:31, Aug. 2015.

[12] V. Astarita, M. V. Caruso, G. Danieli, D. C. Festa, V. P. Giofrè, T. Iuele,
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Luis C. González obtained his PhD from The
University of North Carolina at Charlotte in 2011.
That same year, he joined the Universidad Autónoma
de Chihuahua, in the north of Mexico, where he
was a founder (and now a professor) of the graduate
program of Computer Engineering. Currently, he is
a member of the National System of Researchers of
the National Council of Science and Technology of
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VII. APPENDIX A
A. Details of the Heuristics

Mednis et al. explore and compare four independent heuris-
tics to detect road anomalies: Z-THRESH, G-ZERO, Z-DIFF,
and STDEV(Z) [17]. The first, Z-TRESH, is the simplest
reported way to detect road anomalies, and relies on setting
fixed threshold values to examine all raw vertical acceleration
samples (in the Z axis). If a sample is out of the defined range,
it is assumed that the peak or valley is present because of a
road anomaly, and a detection is triggered for that instant.
G-ZERO is a variation of Z-THRESH, in which thresholds
are applied over raw acceleration data to detect periods in
which sample values come close to zero in the three axes. This
pattern is associated with a vehicle in free fall. Z-DIFF works
with the first derivative of acceleration in the Z axis, in which
finding a value higher than a specified limit reflects a sudden
change in vertical acceleration, associated with a discontinuity
in the road surface profile. STDEV(Z) tests if the standard
deviation of a sliding window is higher than a previously
defined value. Windows with a high standard deviation reflect
sections of irregular road surface (i.e. probably containing a
road anomaly).

The heuristic presented in Pothole Patrol (PP) is formed
by a sequence of filters, and its final output tells us when
a pothole has been detected [15]. The first component is a
highpass filter, used to remove low-frequency components, and
is assumed to reflect driving events (like turning or braking)
instead of the conditions of the road. Next comes Z-PEAK,
which uses the same logic of Z-THRESH, just applied over
highpass filtered data. An attempt to distinguish between wide
(speedbumps, railway crossings) and narrow (potholes) road
anomalies is made by the next component, XZ-RATIO, by
looking for values higher than a certain threshold in lateral
acceleration (in the X axis), close to the instant in which a
detection has been made with Z-PEAK. Lateral acceleration
higher than a specified limit suggests a narrow anomaly has
been found. Since speed is known to affect the acceleration
signature of road anomalies (leading to false detections when
slight deformations in the road produce acceleration signals
typically associated with more significant anomalies), SPEED-
Z-RATIO is meant to discard pothole detections when the ratio
of acceleration and current speed of travel is less than some
predefined reference.

Mohan et al. present in Nericell a heuristic based on two
filters [16]. The first is identical to Z-PEAK, and is applied
if the vehicle is traveling at 25 km/h or faster. The second,
Z-SUS, is meant to be used while driving under 25 km/h,
triggering a detection when at least 20 ms of contiguous
acceleration samples are below a threshold level.

Figure 5. Pothole Lab: A web platform to create virtual roads through
accelerometer patterns of road anomalies.

VIII. APPENDIX B

A. Pothole Lab

The Pothole Lab interface (see Figure 5) asks for 4 param-
eters: number of potholes, number of speed bumps, number
of metal bumps, and the minimum of seconds that separates
road anomalies. With these parameters, the tool randomly
extracts anomalies from the database and distributes these
along time by stitching together samples from the available
collection. The virtual roads are generated and stored in a
file. Each file contains a JSON object with the time series for
acceleration values in three axes, type, and temporal location
of the anomalies. The file also incorporates metadata about
each acceleration sample: placement of the device, vehicle in
which the sample was captured (see Table I), length of that
specific sample, and speed of the vehicle). Acceleration in
each axis was normalized so that the mean value of the Z axis
(vertical acceleration) was g (≈ 9.81 m/s2), and the mean of
the X and Y axes is centered on zero m/s2.

IX. APPENDIX C

A. Machine Learning results over the same feature vector

In order to appreciate the performance of the SVM(Z)
compared with other well known classifiers, we evaluated the
same feature vector, already explained in section IV, using a
Naive Bayes classifier (NB), Random Forrest (RF), Decision
Tree (DT), Artificial Neural Network (NN), a Hidden Markov
Model (HMM) and a Gradient Boosting Classifier (GB). These
results are presented in table X. SVM(Z) yields the best
performance out of all these strategies, then supporting our
decision to use it as our proposal. Note that most of the
classifiers obtain an F1 score above 0.7, suggesting a good
discriminative capacity of the feature vector proposed in this
manuscript.

Table X
AVERAGE F1 SCORES FOR MACHINE LEARNING APPROACHES.

SVM NB RF DT NN HMM GB

.785 .587 .736 .408 .774 .678 .718
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ABSTRACT
Applications for Intelligent Transportation Systems (ITS)
based on common smartphones have become a real pos-
sibility because of their sensing and computing capabili-
ties. Particularly, in this work we employ smartphones’ ac-
celerometers to sense the quality of roads, collecting in the
accelerometers’ axes the perturbations encountered by the
vehicle. The ultimate goal of this line of work is to correctly
identify, classify and geo-reference all obstacles so alleviat-
ing measures can be taken. Having a continuous series of
accelerometer readings, the first problem is to identify the
region where a perturbation was sensed (segmentation). To
approach this problem, we propose using a Support Vector
Machine (SVM) that accomplishes an accuracy performance
of about 82%, outperforming other ad-hoc techniques such
as Simple Mobile Average (SMA) and four other competi-
tors. After having successfully segmented the candidate ac-
celeration readings, the next problem is to classify the event
in one out of four different categories. To this end we apply
a Bag of Words representation and a Random Forrest (RF),
obtaining an accuracy of about 75%. These results were
obtained by exhaustively training and testing this classifier
over a newly created dataset that comprises signals for 30
different roads. Altogether, the use of a SVM followed by
a RF seem to be a viable option to create a pipeline to
automatically recognize and identify Roadway Surface Dis-
ruptions.

Keywords
Mobile Sensing, Smartphone, Accelerometer, Machine Learn-
ing, Bag of Words

1. INTRODUCTION
Intelligent Transportation Systems (ITS) are defined as

technological solutions that improve operation and safety
in transportation networks. One issue that is shared by

thousands of cities worldwide is the presence of anomalies
in roads, that can potentially cause damage to tires and
suspensions in vehicles and lead to tragic accidents. In spite
of the ubiquity of these anomalies, the vast majority of cities
attend this problem using traditional methods, i.e. a workers
crew fortuitously find and (hopefully) fix the anomaly.

Now imagine a scenario where an enormous amount of
vehicles serve as sensing agents, collecting samples to mea-
sure the quality of kilometers of roads, and automatically
sending the report to the office in charge, altogether with
the Global Positioning System (GPS) coordinates of the
anomaly. Without a doubt, this improvement would speed
up maintenance and repairs, reducing costs as a side effect.
This scenario is in the horizon with the omnipresence of
common smartphones, since these devices can be used to
sense the road while the user is driving. In particular, the
accelerometer (now present in almost every smartphone) has
been deemed as the de facto sensor to measure impacts suf-
fered by the vehicle. When the smartphone experiences an
inertial force in any of its axes, the resulting acceleration is
measured in m/s2. From this data, after applying some ro-
tations to the axes to identify the axis that is perpendicular
to the road, it is now possible to infer what caused the im-
pact. This axis, hereinafter Z-axis, reflects every anomaly,
protuberance, bump, or hole that was passed over by the
vehicle.

The literature reports a large number of works that have
been focused on identifying these anomalies. Nonetheless,
there are some shortcomings that have been detected. For
instance, the proposals do not distinguish among different
anomalies (pothole, speed bump, cracks, etc.), or employ
simplistic techniques to extract possible anomalies from a
continuous series of accelerometer readings. Furthermore,
to the best of our knowledge there is not a complete (and
fine-grained) pipeline that, given a series of accelerometer
readings, first segments the readings of interest and then
unequivocally classifies those candidates in one out of several



different categories.
In this work we propose the creation of a Pattern Recog-

nition Pipeline to segment and classify different types of
anomalies present in roads. Figure 1 shows a schematic
representation of this pipeline. First we need to extract
those segments that correspond to anomalies in roads, from
accelerometer data obtained by the drivers’ smartphones.
Once the segmentation is performed and candidate acceler-
ation readings are obtained, a classification is applied to un-
equivocally identify the particular category of the anomaly.
To create the training and testing dataset, we sensed pot-
holes, speed bumps and asphalt bumps in real roads, avenues
and streets. We compare five different classifiers for the seg-
mentation problem, considering as well a traditional com-
petitor. We apply a Random Forrest to perform the classifi-
cation on the segments suspected of containing an anomaly,
since it has proved to be a robust technique hard to overfit.
We present results for the segmentation and classification
task, which show very competitive performance.

Figure 1: Interface of the web platform Pothole Lab.

The rest of this paper is divided as follows: section two
presents related work, detailing different previous approaches
for the segmentation of acceleration signal and the detection
of events of interest. In the third section we present our ex-
perimental setup and our approach to solve the problem,
divided in two stages. We present in the fourth section the
results obtained with our pipeline method and, finally, the
last section presents our conclusions and future work.

2. RELATED WORK
Several vehicular sensing systems for road anomaly detec-

tion have been proposed in the literature, the vast majority
of them use accelerometers and GPS data. The simplest and
most widely used way to detect road anomalies is the usage
of thresholds over accelerometer data. Four different meth-
ods of this kind are proposed in [7], applying thresholds on
samples captured at 100 Hz. The first method they proposed
is Z-THRESH, the simplest reported way to detect events
in acceleration data, making a detection if a sample is above
or below predefined threshold values. Z-DIFF is the sec-
ond method they propose, applying an upper threshold over
the first derivative of the acceleration. STDEV(Z) employs
a sliding window and calculates the standard deviation, if
this metric is above a threshold, it is assumed an event has
been found. The last method proposed is G-ZERO, and uses
triaxial acceleration.

Another approach based on a threshold is presented in [2].
They capture triaxial acceleration and GPS data, installing
dedicated hardware in seven taxis, to collect data while driv-
ing in the Boston area. In their work, they look for values
above a threshold in highpass-filtered vertical acceleration
to detect road anomalies, and use lateral acceleration to dif-

ferentiate between potholes and other types of events. Their
detection strategy was called Z-PEAK.

The usage of two threshold-based heuristics applied on
vertical acceleration is presented in [8]. The first heuristic
(Z-PEAK, presented in [2]) is meant to be used when travel-
ing at speeds higher than 25 km/h and a new one (Z-SUS) at
lower speeds. Z-SUS searches for a sustained dip in vertical
acceleration: consecutive sample values below a threshold,
lasting at least 20 ms.

Other way to process the data for detection is the us-
age of Machine Learning strategies [1,3,5,6,9,10], this kind
of approaches is still growing and the reported results are
still incipient. We expect that with this contribution we set
the first exhaustive testing experiments of Machine Learning
classifiers for this problem.

3. EXPERIMENTAL SETUP
To evaluate the performance of the classifiers, we built a

database that comprises different kind of anomalies (see Ta-
ble 1). These anomalies were manually labeled and curated.
For the collection process we used smartphones Moto G with
Android at a 50 Hz sampling frequency.

Table 1: Anomalies included in the Pothole Lab web
platform.

Category Samples
Speed Bump 81
Pothole 56
Metal bump 50
Plane road 50
Total 137

3.1 Pothole Lab
To evaluate our proposal we created 30 virtual roads, each

one with different number and nature of anomalies, so that
we could test our proposal on a heterogeneous dataset. Table
2, presents the main characteristics for each of the 30 roads.
To create this dataset, we developed a web platform that
receives as input the number and nature of anomalies, pro-
ducing as an output a csv file with real acceleration samples
that correspond to the requested anomalies. This platform
is called Pothole Lab and we make it publicly available at
//www.accelerometer.xyz/pothole lab. Figure 2 presents a
picture of the Pothole Lab interface.

Figure 2: Interface of the web platform Pothole Lab.

3.2 First Stage - Segmentation Problem



Table 2: Thirty virtual roads generated. The num-
ber of every anomaly follows the next key: p = pot-
holes, b = bumps, mb = metal bumps.

Road Training Testing
1 16 p 40 p
2 20 p 50 p
3 30 b 50 b
4 20 b 50 b
5 20 mb 30 mb
6 10 mb 40 mb
7 50 p and b 50 p and b
8 20 p and b 80 p and b
9 20 b and 20 mb 50 b and mb
10 20 p, 20 and 20 mb 100 p, b and mb
11 5 b 10 b
12 5 p 10 p
13 5 mb 10 mb
14 3 b, 3 p 5 b, 5 p
15 3 b, 3 mb 5 b, 5 mb
16 3 p, 3 mb 5 p, 5 mb
17 3 b, 3 p, 3 mb 5 b, 5 p, 5 mb
18 15 b 25 b
19 15 p 25 p
20 15 mb 25 mb
21 8 b, 8 p 15 b, 15 p
22 8 b, 8 mb 15 b, 15 mb
23 8 p, 8 mb 15 p, 15 mb
24 8 b, 8 p, 8 mb 15 b, 15 p, 15 mb
25 30 b 40 b
26 20 p 25 p
27 25 mb 25 mb
28 15 b, 15 p 20 b, 20 p
29 15 b, 12 mb 20 b, 20 mb
30 15 p, 15 mb 20 p, 20 mb

To extract a segment of accelerometer readings and evalu-
ate if it corresponds to an anomaly, we used a sliding window
technique. Every segment (window) is passed to the classi-
fier in turn, so that a category is assigned to the segment.
The categories are: anomaly or non anomaly. For this prob-
lem, we applied and compared five popular Machine Learn-
ing Techniques: Support Vector Machine (SVM), Artificial
Neural Network (ANN), Nearest Centroid (NC), Decision
Tree (DT) and Random Forest (RF). The segments that are
deemed as anomalies are passed to the next stage for classi-
fication. Figure 3 shows an schematic representation of this
stage.

3.3 Second Stage - Classification Problem
When we have the segments, the next step is to classify

them in order to know what type of anomaly they represent.
For this stage we have 4 different classes: class 0 corresponds
to normal road, class 1 to pothole, class 2 to Asphalt bump
and class 3 to Metal bumps.

We split the complete set of training events using a slid-
ing window, each segment is represented by a descriptor, and
thus is associated to a vector representation. Each class have
their descriptors, and are clustered with k-means. The re-
sulting centers of the clusters are taken as codewords. With
this we have a codebook formed by codewords extracted
from all the training samples. Figure 4 shows a schematic

Figure 3: Visualization for the segmentation task.

representation of this process.

Figure 4: Creation of the Codebook.

When the codebook is complete the next step is to use the
test dataset that were segmented by the previous stage. For
each segment we applied a sliding window, to extract shorter
sections. Each section is compared to the elements (code-
words) that we have on the codebook, and using Euclidean
distance the sections are replaced by it closest codeword.
Each segment is now represented by an histogram that indi-
cates the frequency of occurrence of codewords. Afterwards,
a term frequency-inverse document frequency (tf-idf) is ap-
plied and this is the new feature vector for the classifier,
see Figure 5. The tf-idf is a numerical statistic that is in-
tended to reflect how important a word is to a document,
it increases proportionally to the number of times a word
appears in the event, but is offset by the frequency of the
word in others events, which help to adjust for the fact that
some words appear more frequently. For a more detailed
description of the BoW representation see [4].

The resulting representation is passed to a Random Forest
classifier to determine the class of each window.

4. RESULTS
For the first stage we select as the performance metrics the



Figure 5: Representation using BoW.

Accuracy and F-measure of each classifier. The F-Measure1

(equation 1) is defined as the harmonic mean of Recall (equa-
tion 2) and Precision (equation 3). Table 3 shows the accu-
racy of the five classifier over the dataset. Accuracy some-
times could be misleading, this is one of those cases, since
four out of the five classifiers offers very competitive results
(as seen in this table). Nonetheless, when we consider the
F-measure (see Table 4), difference in the classifiers are more
evident. From this table, it could be seen that the best re-
sult, a better trade-off for Recall and Precision, is given by
the SVM.

F −Measure = 2 · precision · recall
precision + recall

(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Table 3: Accuracy.
SVM ANN NC DT RF
0.8151 0.8051 0.7939 0.7337 0.8083

Table 4: F-Measure.
SVM ANN NC DT RF
0.7857 0.7749 0.5875 0.4083 0.7360

A traditional contender for segmentation purposes is known
as the Simple Moving Average (SMA), which detects pertur-
bation on the data based on deviation from some calculated
average. To contrast the results obtained by SVM, Table
5 presents the metric performance for SMA on the segmen-
tation problem. It could be seen that SMA is not able to
accurately identify sections of real anomalies in the road.

We also compared and evaluated our results using classic
threshold methods of the related literature (described on
Section 2), and tested over our roads. These heuristics are

1Just a reminder, TP stands for True Positives, FN and FP
correspond to False Negatives and False Positives, respec-
tively.

useful for detecting a point of interest, but not effective for
segmentation and classification of the event road, note this
results on Table 6, where the F-Measure of these heuristics
is presented.

Table 5: SMA Results.
Precision Recall F-Measure

0.5934 0.5170 0.5240

Table 6: F-Measure Threshold Heuristics Results
ZThresh ZDiff STDE GZER Nericel Pothole
0.7060 0.5280 0.7525 0.6760 0.6750 0.4575

For the classification task, we apply the Random For-
est classifier to candidate segments. Here, we followed two
paths. In the first one, a human expert manually extracted
a candidate anomaly from a series of accelerometer readings
and the RF is applied over this segments (Table 6, first col-
umn). The accuracy for this case achieves a 83%. When the
proposed pipeline is applied, and the segments are automat-
ically extracted by the SVM, the classifiers obtains a 71%
accuracy percent (multi-class scheme). Now, if the classifier
discriminates one class at the time (one-vs-others scheme),
the classification performance achieves 74%.

Table 7: Accuracy Average for Multiclass and One
vs The Rest

Full Event Segmented Event MC Seg Event OvsTR
0.8323 0.7111 0.7425

One final calculation is focused in obtaining a complete
picture of the total accuracy of the pipeline, meaning, what
is the percentage of correctly identified (from a series of read-
ings) events and in turn, be classified in a respective cate-
gory. The total error of our proposal obtained an error of
0.6584

5. CONCLUSIONS AND FUTURE WORK
In this work we present ML methods for the detection

and classification of road anomalies. We propose a SVM to
perform binary classification (anomaly vs no anomaly) over
signal windows using a feature vector with 12 metrics, ef-
fectively segmenting samples with possible anomalies. Clas-
sification is performed by using a BoW representation and
a Random Forest. The results for the segmentation stage
are promising, and the speed of a previously trained SVM
allows for real-time usage in smartphones. For the classifica-
tion stage, the BoW representation shows good performance
over the complete event and acceptable performance over the
partial event. Overall, the presented pipeline based on ML
techniques shows promising results. As for future work, we
aim to explore improvements in the BoW representation by
using n-grams, a different kind of histograms, and different
vocabulary for the classes..
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